Abstract:
An irradiation unit for providing radiation pulses for irradiating a skin surface is provided. The irradiation unit includes a light source unit configured to provide the radiation pulses with a specifiable pulse duration, with a specifiable pulse height and with a specifiable temporal pulse spacing. The light source unit is furthermore configured to illuminate a region of the skin surface of a predetermined size at a predetermined distance from the light source unit in a main radiation direction of the light source unit. The light source unit includes at least one solid-state light source. The irradiation unit further includes a sensor unit and a control device for driving the at least one solid-state light source.
Abstract:
The lighting device (11) has at least one light generation device (12) for generating a primary light (P), a first luminophore (16) for converting the wavelength of the primary light (P) to a first secondary light (S1), and a second luminophore (20) for converting the wavelength of the primary light (P) to a second secondary light (S2), the first luminophore (16) being located on a movable support (15), which is provided in order to alternatively move the first luminophore into and out of a beam path of the primary light (P), and the second luminophore being located on a stationary support (21). The invention also relates to a method for generating wavelength-converted secondary light from primary light with alternating irradiation of a first luminophore located on a movable support and of a second luminophore located on a stationary support by the primary light. The invention can be used, for example, as a projection device for film and video projection, in endoscopy, for lighting effects in the entertainment industry, for medical irradiations as well as in the automobile industry, in particular as a head light for motor vehicles.
Abstract:
The lighting device (11) has at least one light generation device (12) for generating a primary light (P), a first luminophore (16) for converting the wavelength of the primary light (P) to a first secondary light (S1), and a second luminophore (20) for converting the wavelength of the primary light (P) to a second secondary light (S2), the first luminophore (16) being located on a movable support (15), which is provided in order to alternatively move the first luminophore into and out of a beam path of the primary light (P), and the second luminophore being located on a stationary support (21). The invention also relates to a method for generating wavelength-converted secondary light from primary light with alternating irradiation of a first luminophore located on a movable support and of a second luminophore located on a stationary support by the primary light. The invention can be used, for example, as a projection device for film and video projection, in endoscopy, for lighting effects in the entertainment industry, for medical irradiations as well as in the automobile industry, in particular as a head light for motor vehicles.