Abstract:
In at least one embodiment, the semiconductor layering sequence (1) is designed for generating light and comprises semiconductor columns (2). The semiconductor columns (2) have a respective core (21) made of a semiconductor material of a first conductivity type, and a core shell (23) surrounding the core (21) made of a semiconductor material of a second conductivity type. There is an active zone (22) between the core (21) and the core shell (23) for generating a primary radiation by means of electroluminescence. A respective conversion shell (4) is placed onto the semiconductor columns (2), which conversion shell at least partially interlockingly surrounds the corresponding core shell (23), and which at least partially absorbs the primary radiation and converts same into a secondary radiation of a longer wavelength by means of photoluminescence. The conversion shells (4) which are applied to adjacent semiconductor columns (2), only incompletely fill an intermediate space between the semiconductor columns (2).
Abstract:
A phosphor and a method for making the phosphor are disclosed. In an embodiment a phosphor for emission of red light includes SrxCa1−xAlSiN3:Eu, wherein x is: 0.8
Abstract:
A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element Al, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, Al includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1−a)Si2Al2N61.
Abstract:
A luminescent material mixture has a first luminescent material and a second luminescent material, wherein, under excitation with blue light, an emission spectrum of the first luminescent material has a relative intensity maximum in a yellowish-green region of the spectrum at a wavelength of greater than or equal to 540 nm and less than or equal to 560 nm and an emission spectrum of the second luminescent material has a relative intensity maximum in an orange-red region of the spectrum at a wavelength of greater than or equal to 600 nm and less than or equal to 620 nm.
Abstract:
A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element A1, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, A1 includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1−a)Si2Al2N61.
Abstract:
A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element Al, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, Al includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1−a)Si2Al2N61.
Abstract:
A phosphor and a method for making the phosphor are disclosed. In an embodiment a phosphor for emission of red light includes Sr(SraCa1-a)Si2Al2N6:Eu, wherein x is 0.8
Abstract:
A phosphor and a lighting device are disclosed. In an embodiment a lighting device includes a first phosphor disposed in a beam path of the primary radiation source, wherein the first phosphor has the formula Sr(SraM1−a)Si2Al2(N,X)6:D,A,B,E,G,L, wherein element M is selected from Ca, Ba, Mg or combinations thereof, wherein element D is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals or Yb, wherein element A is selected from divalent metals different than those of the elements M and D, wherein element B is selected from trivalent metals, wherein element E is selected from monovalent metals, wherein element G is selected from tetravalent elements, wherein element L is selected from trivalent elements, wherein element X is selected from O or halogen, and wherein a parameter a is between 0.6 and 1.0.
Abstract:
A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element A1, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, A1 includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1-a)Si2Al2N61.
Abstract:
A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element Al, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, Al includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1−a)Si2Al2N61.