摘要:
In at least one embodiment, the semiconductor layering sequence (1) is designed for generating light and comprises semiconductor columns (2). The semiconductor columns (2) have a respective core (21) made of a semiconductor material of a first conductivity type, and a core shell (23) surrounding the core (21) made of a semiconductor material of a second conductivity type. There is an active zone (22) between the core (21) and the core shell (23) for generating a primary radiation by means of electroluminescence. A respective conversion shell (4) is placed onto the semiconductor columns (2), which conversion shell at least partially interlockingly surrounds the corresponding core shell (23), and which at least partially absorbs the primary radiation and converts same into a secondary radiation of a longer wavelength by means of photoluminescence. The conversion shells (4) which are applied to adjacent semiconductor columns (2), only incompletely fill an intermediate space between the semiconductor columns (2).
摘要:
A method produces a multicolor LED display, the display including an LED luminous unit having a multiplicity of pixels. First subpixels, second subpixel and third subpixels contain an LED chip that emits radiation of a first color, wherein a first conversion layer that converts the radiation into a second color is arranged at least above the second subpixels and a second conversion layer that converts the radiation into a third color is arranged above the third subpixels. At least one process step is carried out in which the first or second conversion layer is applied or removed in at least one defined region above the pixels, wherein a portion of the LED chips is electrically operated, and wherein the region is defined by the radiation generated by the operated LED chips, generated heat or a generated electric field.
摘要:
An assembly has a columnar structure arranged with one end on a substrate, wherein the structure is at least partly covered with a semiconductor layer structure having an active zone that generates electromagnetic radiation, the active zone has a band gap for a radiative recombination, and the band gap decreases along a longitudinal axis of the structure in a direction of a free end of the structure such that a diffusion of charge carriers in the direction of the free end of the structure and a radiative recombination of charge carrier pairs in the region of the free end of the structure are supported.
摘要:
A method produces a multicolor LED display, the display including an LED luminous unit having a multiplicity of pixels. First subpixels, second subpixel and third subpixels contain an LED chip that emits radiation of a first color, wherein a first conversion layer that converts the radiation into a second color is arranged at least above the second subpixels and a second conversion layer that converts the radiation into a third color is arranged above the third subpixels. At least one process step is carried out in which the first or second conversion layer is applied or removed in at least one defined region above the pixels, wherein a portion of the LED chips is electrically operated, and wherein the region is defined by the radiation generated by the operated LED chips, generated heat or a generated electric field.
摘要:
In at least one embodiment of the method, said method includes the following steps: A) producing radiation-active islands (4) having a semiconductor layer sequence (3) on a growth substrate (2), wherein the islands (4) each comprise at least one active zone (33) of the semiconductor layer sequence (3), and an average diameter of the islands (4), as viewed in a top view of the growth substrate, amounts to between 50 nm and 10 μm inclusive, B) producing a separating layer (5) on a side of the islands (4) facing the growth substrate (2), wherein the separating layer (5) surrounds the islands (4) all around, as viewed in a top view of the growth substrate (2), C) attaching a carrier substrate (6) to a side of the islands (4) facing away from the growth substrate (2), and D) detaching the growth substrate (2) from the islands (4), wherein at least a part of the separating layer (5) is destroyed and/or at least temporarily softened during the detachment.
摘要:
A light-emitting diode chip comprising:—a semiconductor body (1) having a plurality of active regions (2), wherein—at least one of the active regions (2) has at least two subregions (21 . . . 28),—the active region (2) has at least one barrier region (3) arranged between two adjacent subregions (21 . . . 28) of said at least two subregions (21 . . . 28),—the at least two subregions (21 . . . 28) emit light of mutually different colour during operation of the light-emitting diode chip,—in at least one of the subregions (21 . . . 28) the emission of light is generated electrically, and—the barrier region (3) is configured to hinder a thermally activated redistribution of charge carriers between the two adjacent subregions (21 . . . 28), is specified.
摘要:
In at least one embodiment, the method is designed for producing a light-emitting diode display (1). The method comprises the following steps: •A) providing a growth substrate (2); •B) applying a buffer layer (4) directly or indirectly onto a substrate surface (20); •C) producing a plurality of separate growth points (45) on or at the buffer layer (4); •D) producing individual radiation-active islands (5), originating from the growth points (45), wherein the islands (5) each comprise an inorganic semiconductor layer sequence (50) with at least one active zone (55) and have a mean diameter, when viewed from above onto the substrate surface (20), between 50 nm and 20 μm inclusive; and •E) connecting the islands (5) to transistors (6) for electrically controlling the islands (5).
摘要:
A light-emitting diode chip comprising:—a semiconductor body (1) having a plurality of active regions (2), wherein—at least one of the active regions (2) has at least two subregions (21 . . . 28),—the active region (2) has at least one barrier region (3) arranged between two adjacent subregions (21 . . . 28) of said at least two subregions (21 . . . 28),—the at least two subregions (21 . . . 28) emit light of mutually different colour during operation of the light- emitting diode chip,—in at least one of the subregions (21 . . . 28) the emission of light is generated electrically, and—the barrier region (3) is configured to hinder a thermally activated redistribution of charge carriers between the two adjacent subregions (21 . . . 28), is specified.
摘要:
An optoelectronic semiconductor chip includes an active region arranged between a first semiconductor layer and a second semiconductor layer and generates or receives electromagnetic radiation, the first semiconductor layer electrically conductively connects to a first contact, the first contact is formed on a front side of the chip next to the active region, the second semiconductor layer electrically conductively connects to a second contact, the second contact is arranged on the front side of the chip next to the active region, and an electrically insulating separating layer that electrically insulates a rear side of the chip from the active region of the semiconductor chip, and an electrically insulating separating layer includes at least one first separating layer having at least one atomic layer or at least one molecular layer and is deposited by atomic layer deposition or molecular layer deposition.
摘要:
An optoelectronic semiconductor chip includes a multiplicity of active regions arranged at a distance from one another, and a continuous current spreading layer, wherein at least one of the active regions has a main extension direction, one of the active regions has a core region formed with a first semiconductor material, the active region has an active layer covering the core region at least in directions transversely with respect to the main extension direction of the active region, the active region has a cover layer formed with a second semiconductor material and covers the active layer at least in directions transversely with respect to the main extension direction of the active region, and the current spreading layer covers all cover layers of the active region.