Abstract:
A liquid crystal display includes a display area and a border area at least partially surrounding the display area, where the display area displays images for viewing and the border area displays display-protection images, which are used to control ion migration in the liquid crystal layer. In a more particular embodiment, the border area displays a series of checkerboard pattern(s), where the checkerboard patterns can alternate between initial and inverted values. The display-protection images protect the liquid crystal display from migrating ions accumulating in particular regions of the pixel array and causing permanent defects in the display area. A liquid crystal display that includes a liquid crystal alignment layer having a plurality of liquid crystal alignment directions is also disclosed. The customized liquid crystal alignment director(s) over the border area promote ion migration away from the display area.
Abstract:
An image sensor includes a substrate, a first set of sensor pixels formed on the substrate, and a second set of sensor pixels formed on the substrate. The sensor pixels of the first set are arranged in rows and columns and are configured to detect light within a first range of wavelengths (e.g., white light). The sensor pixels of the second set are arranged in rows and columns and are each configured to detect light within one of a set of ranges of wavelengths (e.g., red, green, and blue). Each range of wavelengths of the set of ranges of wavelengths is a subrange of said first range of wavelengths, and each pixel of the second set of pixels is smaller than each pixel of the first set of pixels.
Abstract:
An image sensor comprises a first photodiode and a second photodiode having a smaller full-well capacitance than the first photodiode, wherein the second photodiode is adjacent to the first photodiode; a first micro-lens is disposed above the first photodiode and on an illuminated side of the image sensor; a second micro-lens is disposed above the second photodiode and on the illuminated side of the image sensor; and a coating layer disposed on both the first and second micro-lens, wherein the coating layer forms a flat top surface on the second micro-lens and a conformal coating layer on the first micro-lens.
Abstract:
A multi-color HDR image sensor includes at least a first combination color pixel with a first color filter and an adjacent second combination color pixel with a second color filter which is different from the first color filter, wherein each combination color pixel includes at least two sub-pixels having at least two adjacent photodiodes. Within each combination color pixel, there is a dielectric deep trench isolation (d-DTI) structure to isolate the two adjacent photodiodes of the two adjacent sub-pixels with same color filters in order to prevent the electrical cross talk. Between two adjacent combination color pixels with different color filters, there is a hybrid deep trench isolation (h-DTI) structure to isolate two adjacent photodiodes of two adjacent sub-pixels with different color filters in order to prevent both optical and electrical cross talk. Each combination color pixel is enclosed on all sides by the hybrid deep trench isolation (h-DTI) structure.
Abstract:
A multi-color HDR image sensor includes at least a first combination color pixel with a first color filter and an adjacent second combination color pixel with a second color filter which is different from the first color filter, wherein each combination color pixel includes at least two sub-pixels having at least two adjacent photodiodes. Within each combination color pixel, there is a dielectric deep trench isolation (d-DTI) structure to isolate the two adjacent photodiodes of the two adjacent sub-pixels with same color filters in order to prevent the electrical cross talk. Between two adjacent combination color pixels with different color filters, there is a hybrid deep trench isolation (h-DTI) structure to isolate two adjacent photodiodes of two adjacent sub-pixels with different color filters in order to prevent both optical and electrical cross talk. Each combination color pixel is enclosed on all sides by the hybrid deep trench isolation (h-DTI) structure.
Abstract:
A method for manufacturing a backside illuminated color image sensor includes (a) modifying the frontside of an image sensor wafer, having pixel arrays, to produce electrical connections to the pixel arrays, wherein the electrical connections extend depth-wise into the image sensor wafer from the frontside, and (b) modifying the backside of the image sensor wafer to expose the electrical connections.
Abstract:
An image sensor includes a substrate, a plurality of light sensitive pixels, a first plurality of color filters, a plurality of reflective sidewalls, and a second plurality of color filters. The light sensitive pixels are formed on said substrate. The first plurality of color filters is disposed over a first group of the light sensitive pixels. The reflective sidewalls are formed on each side of each of the first plurality of color filters. The second plurality of color filters are disposed over a second group of light sensitive pixels and each color filter of the second plurality of color filters is separated from each adjacent filter of said first plurality of color filters by one of the reflective sidewalls. In a particular embodiment an etch-resistant layer is disposed over the first plurality of color filters and the second group of light sensitive pixels.
Abstract:
An image sensor includes a substrate, a plurality of light sensitive pixels, a first plurality of color filters, a plurality of reflective sidewalls, and a second plurality of color filters. The light sensitive pixels are formed on said substrate. The first plurality of color filters is disposed over a first group of the light sensitive pixels. The reflective sidewalls are formed on each side of each of the first plurality of color filters. The second plurality of color filters are disposed over a second group of light sensitive pixels and each color filter of the second plurality of color filters is separated from each adjacent filter of said first plurality of color filters by one of the reflective sidewalls. In a particular embodiment an etch-resistant layer is disposed over the first plurality of color filters and the second group of light sensitive pixels.
Abstract:
A novel method of forming an alignment layer of a liquid crystal display device includes the steps of providing a substrate (e.g., a processed silicon wafer, etc.) having an alignment layer material deposited thereon and applying a series of pulses from a pulse laser to anneal portions of the alignment layer material and alter its surface morphology. The method can include the step of depositing the alignment layer material (e.g., a spin-on dielectric including SiO2) over the substrate using a spin-on process prior to laser annealing. Applying the series of laser pulses creates a repetitive pattern of features that facilitate alignment of liquid crystals according to a laser scan trace. Liquid crystal display devices with laser-annealed alignment layer(s) are also disclosed. The alignment layers of the invention are quickly and inexpensively applied and are very robust under prolonged, high-intensity light stress.
Abstract:
An image sensor includes a substrate, a first set of sensor pixels formed on the substrate, and a second set of sensor pixels formed on the substrate. The sensor pixels of the first set are arranged in rows and columns and are configured to detect light within a first range of wavelengths (e.g., white light). The sensor pixels of the second set are arranged in rows and columns and are each configured to detect light within one of a set of ranges of wavelengths (e.g., red, green, and blue). Each range of wavelengths of the set of ranges of wavelengths is a subrange of said first range of wavelengths, and each pixel of the second set of pixels is smaller than each pixel of the first set of pixels.