Abstract:
There is provided a sol in which surface-modified colloidal particles are dispersed in a liquid, wherein the surface-modified colloidal particles are obtained by using anhydrous zinc antimonate colloidal particles, metal oxides comprising tin atom, zinc atom, antimony atom and oxygen atom, or tin oxide-doped anhydrous zinc antimonate colloidal particles as nuclei, and by coating the surface of the nuclei with an aluminum-containing substance (e.g., an aluminum chelating agent), a polymer type surfactant (e.g., a polycarboxylic acid ester or polyethylene glycol monoaliphatic acid ester surfactant) or both of them. The anhydrous zinc antimonate sol is used for several purposes such as transparent antistatic materials in the form of resin, plastic, glass, paper, magnetic tape or the like, transparent UV absorbers, transparent heat radiation absorbers, high refractive index hard coating agent, anti-reflective agent and the like.
Abstract:
There is provided a sol in which surface-modified colloidal particles are dispersed in a liquid, wherein the surface-modified colloidal particles are obtained by using anhydrous zinc antimonate colloidal particles, metal oxides comprising tin atom, zinc atom, antimony atom and oxygen atom, or tin oxide-doped anhydrous zinc antimonate colloidal particles as nuclei, and by coating the surface of the nuclei with an aluminum-containing substance (e.g., an aluminum chelating agent), a polymer type surfactant (e.g., a polycarboxylic acid ester or polyethylene glycol monoaliphatic acid ester surfactant) or both of them. The anhydrous zinc antimonate sol is used for several purposes such as transparent antistatic materials in the form of resin, plastic, glass, paper, magnetic tape or the like, transparent UV absorbers, transparent heat radiation absorbers, high refractive index hard coating agent, anti-reflective agent and the like.
Abstract:
The present invention relates to a metal oxide particle comprising tin atom, zinc atom, antimony atom and oxygen atom, having a molar ratio SnO2:ZnO:Sb2O5 of 0.01–1.00:0.80–1.20:1.00 and having a primary particle diameter of 5 to 500 nm; and a process for producing the metal oxide particle comprising the steps of: mixing a tin compound, a zinc compound and an antimony compound in a molar ratio SnO2:ZnO:Sb2O5 of 0.01–1.00:0.80–1.20:1.00; and calcining the mixture at a temperature of 300 to 900° C. The metal oxide particle is used for several purposes such as antistatic agents, UV light absorbers, heat radiation absorbers or sensors for plastics or glass, etc.
Abstract:
A method for producing an organic solvent dispersion of an intrinsically conductive polymer which comprises a step of deionizing an aqueous colloidal dispersion of an intrinsically conductive polymer by the passing of liquid, thereby clearing the intrinsically conductive polymer of cations adhering thereto, and a subsequent step of substituting water in the aqueous colloidal dispersion by an organic solvent. This method permits easy production of an organic solvent dispersion of an intrinsically conductive polymer which can be applied to various uses as electrode materials, antistatic agents, UV light absorbers, heat ray absorbers, electromagnetic wave absorbers, sensors, electrolyte for electrolytic capacitors, and electrodes for secondary batteries.
Abstract:
The present invention relates to a metal oxide particle comprising tin atom, zinc atom, antimony atom and oxygen atom, having a molar ratio SnO2:ZnO:Sb2O5 of 0.01-1.00:0.80-1.20:1.00 and having a primary particle diameter of 5 to 500 nm; and a process for producing the metal oxide particle comprising the steps of: mixing a tin compound, a zinc compound and an antimony compound in a molar ratio SnO2:ZnO:Sb2O5 of 0.01-1.00:0.80-1.20:1.00; and calcining the mixture at a temperature of 300 to 900° C. The metal oxide particle is used for several purposes such as antistatic agents, UV light absorbers, heat radiation absorbers or sensors for plastics or glass, etc.
Abstract translation:本发明涉及包含锡原子,锌原子,锑原子和氧原子的金属氧化物粒子,其SnO 2:ZnO:Sb 2 O 5的摩尔比为0.01〜1.00:0.80-1.20:1.00,一次粒径为5〜 500 nm; 以及金属氧化物粒子的制造方法,其特征在于,将SnO 2 :ZnO:Sb 2 O 5的摩尔比为0.01〜1.00:0.80-1.20:1.00的锡化合物,锌化合物和锑化合物混合。 并在300〜900℃的温度下煅烧该混合物。金属氧化物颗粒用于多种用途,例如抗静电剂,UV光吸收剂,散热吸收剂或用于塑料或玻璃的传感器等。
Abstract:
An electro-conductive oxide particle comprising indium atoms, antimony atoms and oxygen atoms in a molar ratio of Sb/In of from 0.03 to 0.08, having a primary particle diameter of from 2 to 300 nm, and having a crystal structure of indium oxide.
Abstract:
This invention provides a process for producing a dispersion liquid of an intrinsic electroconductive polymer in an organic solvent, comprising a deionization step of deionizing an aqueous colloid dispersion liquid of an intrinsic electroconductive polymer by a liquid feeding method to remove cations adsorbed on the intrinsic electroconductive polymer, a solvent displacement step of subjecting water in the aqueous colloid dispersion liquid after the deionization step to solvent displacement with an organic solvent (excluding N-methylpyrrolidone and dimethyl sulfoxide), and an additive treatment step of, after the solvent displacement step, adding N-methylpyrrolidone or dimethyl sulfoxide. This process can easily produce a dispersion liquid of an intrinsic electroconductive polymer in an organic solvent that can be used in various applications such as electrode materials, antistatic agents, ultraviolet absorbers, heat absorbers, electromagnetic wave absorbers, sensors, electrolytes for electrolytic capacitors, and electrodes for rechargeable batteries.
Abstract:
The present invention relates to compositions capable of forming a coating and comprising a mixture of a conductive polymer in colloidal form and carbon, methods for their manufacture and use for high-capacity electrical double layer capacitors to be utilized in various electronic apparatuses, power supplies and the like.
Abstract:
A three-pole two-layer photo-rechargeable battery has a laminated two-layered structure that includes a solar battery cell, a storage cell, and a common electrode therebetween. The solar battery cell has a structure wherein a photo-electrode, which has a photo-sensitized dye and a semiconductor layer on a conductive substrate with optical transparency, counters via a first electrolytic solution a common electrode that has a catalyst layer on a conductive substrate. The storage cell has a structure wherein the common electrode, which has a first conductive polymer layer on a conductive substrate on a side opposite the catalyst layer, counters via a second electrolytic solution a storage cell counter electrode that has a second conductive polymer layer on a conductive substrate.
Abstract:
This invention provides a process for producing a dispersion liquid of an intrinsic electroconductive polymer in an organic solvent, comprising a deionization step of deionizing an aqueous colloid dispersion liquid of an intrinsic electroconductive polymer by a liquid feeding method to remove cations adsorbed on the intrinsic electroconductive polymer, a solvent displacement step of subjecting water in the aqueous colloid dispersion liquid after the deionization step to solvent displacement with an organic solvent (excluding N-methylpyrrolidone and dimethyl sulfoxide), and an additive treatment step of, after the solvent displacement step, adding N-methylpyrrolidone or dimethyl sulfoxide. This process can easily produce a dispersion liquid of an intrinsic electroconductive polymer in an organic solvent that can be used in various applications such as electrode materials, antistatic agents, ultraviolet absorbers, heat absorbers, electromagnetic wave absorbers, sensors, electrolytes for electrolytic capacitors, and electrodes for rechargeable batteries.