Abstract:
A forming apparatus comprises a die formed with a through hole for provision of a cavity. A feeder box stored with a raw material powder having an average grain diameter of 0.1 &mgr;m˜500 &mgr;m is positioned above the cavity of the die, and the raw material powder is allowed to fall into the cavity while an inside of the feeder box and an inside of the cavity are each maintained at a pressure not greater than 10 kPa. During the supply of the raw material powder, the feeder box may be vibrated, or the supply may be made via a hose. The raw material powder may be a granulated powder or a rare-earth alloy powder. The raw material powder supplied in the cavity is pressed by an upper punch and a lower punch into a compact.
Abstract:
Permanent magnets in which the ferromagnetic phase is matched with the grain boundary phase, and permanent magnets in which magnetocrystalline anisotropy in the vicinity of the outermost shell of the major phase is equivalent in intensity to that in the inside to suppress nucleation of the inverse magnetic domain. Guideline for designing permanent magnets having high magnetic performance is provided.
Abstract:
Manufacture by rolling silicon steel having a silicon content of 3 wt % or greater and by rolling thin sendust sheet is implemented by powder metallurgical fabrication using powder as the starting raw material, and the average crystal grain size of the sheet-form sintered body or quick-cooled steel sheet is made 300 pm or less, whereby intra-grain slip transformation occurs after slip transformation in the grain boundaries, wherefore cold rolling is rendered possible. In addition, a mixture powder wherein pure iron powder and Fe—Si powder are mixed together in a prescribed proportion is fabricated with a powder metallurgy technique, and an iron-rich phase is caused to remain in the sintered body, whereby cold rolling is possible using the plastic transformation of those crystal grains. Furthermore, when a minute amount of a non-magnetic metal element such as Ti, V, or Al, etc., is added beforehand, it becomes easy to make the iron-rich phase and silicon-rich phase enter into solid solution during annealing, crystal grain growth can be promoted, the magnetic properties of the fabricated steel sheet become roughly equivalent to those of conventional ingot material, and silicon steel sheet exhibiting outstanding magnetic properties can be fabricated.
Abstract:
An anisotropic thin-film rare-earth permanent magnet endowed with high magnetic characteristics by rendering a vapor-phase-grown thin film anisotropic in the layering direction. The atomic laminate units are formed by laminating a monoatomic layer of a rare earth element on a substrate of a non-magnetic material having, a flat smoothness and then by laminating an atomic laminate of a transition metal element having a plurality of monoatomic layers of a transition metal element, so that the atomic laminate units of a characteristic construction are laminated in a plurality of layers. As a result, each atomic laminate of the transition metal element has an easy magnetizable axis in the laminate direction of the monoatomic layers and which are sandwiched between a monoatomic layer of a rare-earth element so that an inverse magnetic domain is suppressed to establish a strong coercive force. Moreover, the content of the transition metal element to the rare-earth metal is raised to improve the residual magnetic flux density drastically.
Abstract:
Permanent magnets in which the ferromagnetic phase is matched with the grain boundary phase, and permanent magnets in which magnetocrystalline anisotropy in the vicinity of the outermost shell of the major phase is equivalent in intensity to that in the inside to suppress nucleation of the reverse magnetic domain, more specifically having a magnetocrystalline anisotropy not less than one-half the magnetocrystalline anisotropy of the interiors of the ferromagnetic grains, are disclosed.
Abstract:
Permanent magnets in which the ferromagnetic phase is matched with the grain boundary phase, and permanent magnets in which magnetocrystalline anisotropy in the vicinity of the outermost shell of the major phase is equivalent in intensity to that in the inside to suppress nucleation of the reverse magnetic domain, more specifically having a magnetocrystalline anisotropy not less than one-half the magnetocrystalline anisotropy of the interiors of the ferromagnetic grains, are disclosed.
Abstract:
A compact is produced from an alloy powder for R—Fe—B type rare earth magnets including particles having a size in a range of about 2.0 &mgr;m to about 5.0 &mgr;m as measured by a light scattering method using a Fraunhofer forward scattering in a proportion of approximately 45 vol. % or more and particles having a size larger than about 10 &mgr;m in a proportion of less than about 1 vol. %. The compact is then sintered to obtain a R—Fe—B type rare earth magnet having an average crystal grain size in a range of about 5 &mgr;m to about 7.5 &mgr;m, and an oxygen concentration in a range of about 2.2 at. % to about 3.0 at. %.
Abstract:
A densified high performance rare earth-iron-nitrogen permanent magnet obtained from a powder of a Th.sub.2 Zn.sub.17 compound containing nitrogen at interlattice sites, without using autogeneous sintering and yet preventing decomposition and/or denitrification from occurring. The process for producing the same need not necessarily use a binder, and it comprises compaction molding, or charging while applying a magnetic field, a powder of a nitrogen intrusion T--R--N compound having a specified composition and a Th.sub.2 Zn.sub.17 crystal structure, and applying thereto shock compression at a drive pressure of from 10 to 25 GPa as reduced to an equivalent drive pressure in an iron capsule.
Abstract:
A permanent magnet for a particle accelerator and a magnetic field generator, in which Nd—Fe—B based magnets are used but are not demagnetized so easily even when exposed to a radiation, are provided. A permanent magnet for a particle accelerator is used in an environment in which the magnet is exposed to a radiation at an absorbed dose of at least 3,000 Gy. The magnet includes R (which is at least one of the rare-earth elements), B, TM (which is at least one transition element and includes Fe) and inevitably contained impurity elements. The magnet is a sintered magnet that has been magnetized to a permeance coefficient of 0.5 or more and that has a coercivity HcJ of 1.6 MA/m or more.
Abstract:
A permanent magnet for a particle accelerator and a magnetic field generator, in which Nd—Fe—B based magnets are used but are not demagnetized so easily even when exposed to a radiation, are provided. A permanent magnet for a particle accelerator is used in an environment in which the magnet is exposed to a radiation at an absorbed dose of at least 3,000 Gy. The magnet includes R (which is at least one of the rare-earth elements), B, TM (which is at least one transition element and includes Fe) and inevitably contained impurity elements. The magnet is a sintered magnet that has been magnetized to a permeance coefficient of 0.5 or more and that has a coercivity HcJ of 1.6 MA/m or more.