Abstract:
A method of selectively controlling the self-sealing ability of a tyre obtained by application of a sealing assembly on a drum and subsequent formation thereon of a precursor of a green tyre inclusive of liner and carcass, followed by shaping, curing and molding. The sealing assembly includes: a self-supporting thermoplastic film of polyamide or polyester and a layer of sealing material possessing viscoelasticity and stickiness features, which is associated with and supported by the self-supporting thermoplastic film. The sealing assembly is easily puncturable by a sharp-pointed element while it maintains such a deformability and stickiness that it helps in the transfer of the sealing material during ejection of the sharp-pointed element and limits the transferred material amount to such an extent that holes bigger than a predetermined value are not sealed.
Abstract:
An apparatus for extruding a polymeric material, having an extrusion head which includes a male die, a female die coaxially arranged with respect to the male die, a conveying channel, and at least one portion of which is defined between the male die and the female die. The apparatus further includes a device for adjusting a cross-sectional area of the at least one portion of the conveying channel by reciprocally displacing the female die with respect to the male die in response to an extrusion speed variation of the polymeric material.
Abstract:
A plant (1) for looping annular anchoring structures (100) includes a looping device (2), a separation station (8a) and a coupling station (8b). A handling apparatus (3) is interlocked to the looping device (2) for managing the plant (1) by moving the plurality of annular anchoring structures (100) coupled to respective separation elements (300), the looped annular anchoring structures (200) coupled to respective separation elements (300) and the separation elements (300a). The separation elements (300) are fed, coupled to respective annular anchoring structures (100), along a feeding section (A1). The separation elements (300a) separated by respective annular anchoring structures (100, 200) are transferred from the separation station (8a) to the coupling station (8b) along a transfer section (T), stationing in at least a first intermediate station (11, 11a). The separation elements (300) are moved away, coupled to respective looped annular anchoring structures (200), along a moving-apart section (A2).
Abstract:
A method of selectively controlling the self-sealing ability of a tyre obtained by application of a sealing assembly on a drum and subsequent formation thereon of a precursor of a green tyre inclusive of liner and carcass, followed by shaping, curing and molding. The sealing assembly includes: a self-supporting thermoplastic film of polyamide or polyester and a layer of sealing material possessing viscoelasticity and stickiness features, which is associated with and supported by the self-supporting thermoplastic film. The sealing assembly is easily puncturable by a sharp-pointed element while it maintains such a deformability and stickiness that it helps in the transfer of the sealing material during ejection of the sharp-pointed element and limits the transferred material amount to such an extent that holes bigger than a predetermined value are not sealed.
Abstract:
A method of selectively controlling the self-sealing ability of a tyre obtained by application of a sealing assembly on a drum and subsequent formation thereon of a precursor of a green tyre inclusive of liner and carcass, followed by shaping, curing and molding. The sealing assembly includes: a self-supporting thermoplastic film of polyamide or polyester and a layer of sealing material possessing viscoelasticity and stickiness features, which is associated with and supported by the self-supporting thermoplastic film. The sealing assembly is easily puncturable by a sharp-pointed element while it maintains such a deformability and stickiness that it helps in the transfer of the sealing material during ejection of the sharp-pointed element and limits the transferred material amount to such an extent that holes bigger than a predetermined value are not sealed.
Abstract:
In a process for producing self-sealing tires for vehicle wheels, a continuous sealing assembly, including a self-supporting thermoplastic film and a layer of polymeric sealing material, is wound from a reel holder on which is stocked, separated by a protective film associated with the layer of polymeric sealing material, cut to size and then wound around a forming drum. Winding the sealing assembly cut to size includes: feeding the sealing assembly cut to size onto a chute from top to bottom up to the forming drum; depositing a leading end of the sealing assembly cut to size on a radially outer surface of the forming drum; locking the leading end on the forming drum by means of a locking bar; setting the forming drum in rotation with the locking bar dragging the sealing assembly cut to size and winding it on the forming drum up to overlapping; and sealing a trailing end of the sealing assembly cut to size on the leading end.
Abstract:
In a process for producing self-sealing tyres for vehicle wheels, a continuous sealing assembly, including a self-supporting thermoplastic film and a layer of polymeric sealing material, is wound from a reel holder on which is stocked, separated by a protective film associated with the layer of polymeric sealing material, cut to size and then wound around a forming drum. Winding the sealing assembly cut to size includes: feeding the sealing assembly cut to size onto a chute from top to bottom up to the forming drum; depositing a leading end of the sealing assembly cut to size on a radially outer surface of the forming drum; locking the leading end on the forming drum by means of a locking bar; setting the forming drum in rotation with the locking bar dragging the sealing assembly cut to size and winding it on the forming drum up to overlapping; and sealing a trailing end of the sealing assembly cut to size on the leading end.