Abstract:
Disclosed are a microneedle patch including a first hydrogel layer containing a mussel adhesive protein and hyaluronic acid, and a second hydrogel layer containing silk fibroin, and a preparation method thereof. The microneedle patch according to the present disclosure has excellent tissue adhesion, biocompatibility, and biodegradability, and is used for transdermal drug delivery to promote wound regeneration.
Abstract:
The present invention relates to a pH-responsive metal-catechol derivative nanoparticle for drug delivery based on a mussel adhesive protein, particularly Fe(III)-DOPA nanoparticle, and a method for preparing the same. A nanoparticle for drug delivery according to the present invention is prepared using a pH responsive substance, catechol derivative-metal complex, particularly Fe(III)-DOPA complex, based on a mussel adhesive protein. Thereby, the present invention has excellent biocompatibility, is capable of easily and quickly penetrating into a target cell, and releases a loaded drug under acidic conditions, which enables to selectively deliver a drug to a specific disease having an acidic environment.
Abstract:
Disclosed are a microneedle patch including a first hydrogel layer containing a mussel adhesive protein and hyaluronic acid, and a second hydrogel layer containing silk fibroin, and a preparation method thereof. The microneedle patch according to the present disclosure has excellent tissue adhesion, biocompatibility, and biodegradability, and is used for transdermal drug delivery to promote wound regeneration.
Abstract:
The present invention relates to a fusion protein comprising a mussel adhesive protein and a silica-binding peptide linked to the mussel adhesive protein, a silica nanoparticle a silica connected to the fusion protein, a fusion protein-silica nanoparticle complex comprising the silica nanoparticle having bioactivity and adhesiveness for cell proliferation and accelerating the differentiation, a surface coating composition including the complex, its use, and a method of coating a surface using the surface coating composition.
Abstract:
The present invention relates to a pH-responsive metal-catechol derivative nanoparticle for drug delivery based on a mussel adhesive protein, particularly Fe(III)-DOPA nanoparticle, and a method for preparing the same. A nanoparticle for drug delivery according to the present invention is prepared using a pH responsive substance, catechol derivative-metal complex, particularly Fe(III)-DOPA complex, based on a mussel adhesive protein. Thereby, the present invention has excellent biocompatibility, is capable of easily and quickly penetrating into a target cell, and releases a loaded drug under acidic conditions, which enables to selectively deliver a drug to a specific disease having an acidic environment.
Abstract:
The present invention relates to a composite including chitosan and/or chitin and a catechol-based compound, an organic reinforcing material composition including the composite, a product manufactured by using the organic reinforcing material composition, and a method for preparing a chitosan and/or chitin composite with improved strength, including the step of adding the catechol-based compound to chitosan and/or chitin. The chitosan and/or chitin composite including the catechol-based compound is advantageous in that it is able to maintain high strength in a wet-swollen state by improving the problem of strength reduction due to moisture, compared to the composites containing no catechol-based compound.
Abstract:
A coacervate including a catechol-substituted anionic polymer; an adhesive including same; and a method for producing the coacervate are described. More specifically, a coacervate formed by mixing a catechol derivative of a mussel adhesive protein and a catechol-substituted anionic polymer; an adhesive including the coacervate; and a method for producing a coacervate are described. The method includes a step of obtaining a catechol-substituted anionic polymer through catechol substitution of an anionic polymer, and a step of mixing the catechol-substituted anionic polymer and a catechol derivative of a mussel adhesive protein.
Abstract:
The present invention relates to a porous microsphere comprising a mussel adhesive protein and a method of preparing the same. The porous microsphere comprising the mussel adhesive protein according to the present invention is capable of minimally invasive bio-injection through syringes to efficiently deliver therapeutic stem cells to the sites of tissue defects as cell carriers. Further, the present invention may be widely applied to scaffolds for tissue engineering, drug carriers, or the like, which may be suitably applied to the size of the defected site of tissue.
Abstract:
Disclosed are a bio-responsive adhesive antibody delivery platform for immunotherapy, use thereof, and a preparation method thereof. The bio-responsive adhesive antibody delivery platform for immunotherapy according to the present disclosure may enhance a retention time of the antibody at a target site via adhesiveness of the delivery platform and may selectively release the antibody in response to specific enzymes to efficiently deliver the antibody.
Abstract:
An antimicrobial adhesive protein, an antimicrobial nanoparticle, an antimicrobial composition comprising the same nanoparticle, and a preparation method for the same composition are described and, more particularly, an antimicrobial adhesive protein in which an antibiotic peptide is linked to a mussel adhesive protein, a mussel adhesive protein derivative of which a tyrosine residue within the antimicrobial adhesive protein is modified with a catechol derivative, an antimicrobial nanoparticle including a metal capable of forming a coordinate bond with a derivative of the mussel adhesive protein and having intrinsic antimicrobial activity, an antimicrobial composition comprising the same nanoparticle, and a preparation method for the same composition are described.