摘要:
A throttle potentiometer adapter provides a direct connection between a pivot nut on a hand throttle linkage and the internal sleeve of a potentiometer. The potentiometer provides a voltage output to an electronic controller, the voltage output corresponding to the position of the hand throttle. The adapter is of one-piece construction and includes a socket engaging the pivot nut and a shaft extending into the internal sleeve.
摘要:
A method (100) of forming a transistor includes forming a gate structure (106, 108) over a semiconductor body and forming recesses (112) substantially aligned to the gate structure in the semiconductor body. Silicon germanium is then epitaxially grown (114) in the recesses, followed by forming sidewall spacers (118) over lateral edges of the gate structure. The method continues by implanting source and drain regions in the semiconductor body (120) after forming the sidewall spacers. The silicon germanium formed in the recesses resides close to the transistor channel and serves to provide a compressive stress to the channel, thereby facilitating improved carrier mobility in PMOS type transistor devices.
摘要:
An embodiment of the instant invention is a method of fabricating an electronic device over a semiconductor substrate which includes a dielectric layer formed between a first structure and a second structure, the method comprising the steps of: growing an oxide-containing layer (layer 204 of FIGS. 2a-2d) on the first structure (substrate 202 of FIGS. 2a-2d); forming a silicon-containing layer (layer 206 of FIG. 2b) on the oxide-containing layer; oxidizing substantially all of the silicon-containing layer by subjecting it to an ambient comprised of oxygen and nitrogen with a substrate temperature around 700 to 800 C.; and forming the second structure (layer 214 of FIG. 2d) on the oxidized silicon-containing layer. Preferably, the step of oxidizing substantially all of the silicon-containing layer is performed by subjecting the silicon-containing layer to an ambient containing: N2O with a wafer temperature around 700 to 800 C.; or NO with a wafer temperature around 700 to 800 C. The nitrogen is, preferably, incorporated between the oxide-containing layer and the first structure and/or between the oxide-containing layer and the oxidized silicon-containing layer.
摘要:
A silicon nitrate layer (110) is formed over a transistor gate (40) and source and drain regions (70). The as-formed silicon nitride layer (110) comprises a first tensile stress and a high hydrogen concentration. The as-formed silicon nitride layer (110) is thermally annealed converting the first tensile stress into a second tensile stress that is larger than the first tensile stress. Following the thermal anneal, the hydrogen concentration in the silicon nitride layer (110) is greater than 12 atomic percent.
摘要:
A silicon nitride layer (110) is formed over a transistor gate (40) and source and drain regions (70). The as-formed silicon nitride layer (110) comprises a first tensile stress and a high hydrogen concentration. The as-formed silicon nitride layer (110) is thermally annealed converting the first tensile stress into a second tensile stress that is larger than the first tensile stress. Following the thermal anneal, the hydrogen concentration in the silicon nitride layer (110) is greater than 12 atomic percent.
摘要:
Semiconductor devices (102) and fabrication methods (10) are provided, in which a nitride film (130) is formed over NMOS transistors to impart a tensile stress in all or a portion of the NMOS transistor to improve carrier mobility. The nitride layer (130) is initially deposited over the transistors at low temperature with high hydrogen content to provide a moderate tensile stress in the semiconductor body prior to back-end processing. Subsequent back-end thermal processing reduces the film hydrogen content and causes an increase in the applied tensile stress.
摘要:
Dual gate dielectric layers are formed on a semiconductor substrate for MOS transistor fabrication. A first dielectric layer (30) is formed on a semiconductor substrate (10). A first plasma nitridation process is performed on said first dielectric layer. The first dielectric layer (30) is removed in regions of the substrate and a second dielectric layer (50) is formed in these regions. A second plasma nitridation process is performed on the first dielectric layer and the second dielectric. MOS transistors (160, 170) are then fabricated using the dielectric layers (30, 50).
摘要:
A method (100) of forming semiconductor structures (202) including high-temperature processing steps (step 118), incorporates the use of a high-temperature nitride-oxide mask (220) over protected regions (214) of the device (202). The invention has application in many different embodiments, including but not limited to, the formation of recess, strained device regions (224).
摘要:
The invention is a method of selectively forming contacts on ultra shallow source and drain junctions. The method comprises forming a gate structure that defines a gate on a silicon substrate, portions of which are covered with a layer of silicon dioxide while the portions adjacent the gate form a silicon surface. The gate structure includes a surface material upon which germanium will not deposit at a temperature that is otherwise high enough to cause germanium to deposit from a germanium containing gas onto a silicon surface, but that is lower than the temperature at which germanium will deposit on the gate surface material. A source and drain are formed in the silicon substrate in the portions adjacent the gate by adding dopant atoms and in which the source and drain are separated by an active region of the silicon substrate defined by the gate structure. The substrate is then exposed to a germanium containing gas at a temperature high enough to cause the germanium to deposit from the germanium containing gas into the silicon surface but lower than the temperature at which the germanium will deposit on the gate structure surface material. The result is self-aligned germanium contacts to the source and the drain. The method can further comprise selectively depositing a metal on the germanium and annealing the deposit to form a germanide compound from the reaction between the deposited germanium and the deposited metal.
摘要:
A transistor is fabricated upon a semiconductor substrate, where the yield strength or elasticity of the substrate is enhanced or otherwise adapted. A strain inducing layer is formed over the transistor to apply a strain thereto to alter transistor operating characteristics, and more particularly to enhance the mobility of carriers within the transistor. Enhancing carrier mobility allows transistor dimensions to be reduced while also allowing the transistor to operate as desired. However, high strain and temperature associated with fabricating the transistor result in deleterious plastic deformation. The yield strength of the silicon substrate is therefore adapted by incorporating nitrogen into the substrate, and more particularly into source/drain extension regions and/or source/drain regions of the transistor. The nitrogen can be readily incorporated during transistor fabrication by adding it as part of source/drain extension region formation and/or source/drain region formation. The enhanced yield strength of the substrate mitigates plastic deformation of the transistor due to the strain inducing layer.