METHOD OF CONTINUOUSLY PRODUCING NANO-SIZED AEI-TYPE ZEOLITES

    公开(公告)号:US20220153600A1

    公开(公告)日:2022-05-19

    申请号:US17433409

    申请日:2020-04-09

    IPC分类号: C01B39/48 B01J19/24

    摘要: A method of continuously forming AEI-type zeolites in a tubular reactor via a hydrothermal synthesis. A gel composition formed upon using this method includes one or more sources of silica, alumina, organic structure directing agents (OSDA), alkali metal ions; water; and optionally zeolite seeds. This gel composition is defined by the molar ratios of SiO2/AI2O3 15:1 to 100:1; M2O/SiO2 0.15:1 to 0.30:1; ROH/SiO2 0.05:1 to 0.2:1; and H2O/SiO2 5:1 to 20:1; wherein M is the alkali metal ion and R is an organic moiety derived from the OSDA. This gel composition, after reacting at a temperature between 180° C. to about 220° C. for less than 2 hours forms the crystalline AEI-type zeolite having a silica to alumina ratio (SiO2/AI2O3) that is greater than 14:1.

    METHOD OF MAKING AEI-TYPE ZEOLITES HAVING A HIGH SILICA TO ALUMINA MOLAR RATIO (SAR)

    公开(公告)号:US20210403334A1

    公开(公告)日:2021-12-30

    申请号:US17290794

    申请日:2019-11-04

    IPC分类号: C01B39/48

    摘要: A method of forming AEI-type zeolites in a hydrothermal synthesis without the use of hydrogen fluoride (HF) and in the presence of an FAU zeolite NaY with SAR ≤5, a Y zeolite with a SAR ≥5, or a combination thereof. A gel composition formed upon using this method includes one or more sources of silica, alumina, organic structure directing agents (OSDA), and alkali metal ions; zeolite seeds; and water. This gel composition is defined by the molar ratios of: SiO2/AI2O3 18:1 to 100:1; M2O/SiO2 0.15:1 to 0.30:1; ROH/SiO2 0.05:1 to 0.13:1; and H2O/SiO2 5:1 to 20:1; wherein M is the alkali metal ion and R is an organic moiety derived from the OSDA. This gel composition, after reacting at a temperature between 135° C. to about 200° C. for 10 hours to 168 hours forms the crystalline AEI-type zeolite having a silica to alumina ratio (SiO2:AI2O3) that is greater than 15:1.