Abstract:
A solar cell module is provided with: a plurality of solar cell elements each having a surface; a light diffusion portion provided in an outer peripheral area of the surface; and connection members which connect the plurality of solar cell elements. The outer peripheral area has restricted areas where formation of the light diffusion portion is restricted, in a part thereof, and the restricted areas are provided in positions where the outer peripheral area and the connection members intersect. The solar cell element may have, on the surface, bus bar electrodes which extend along the connection members. The restricted areas may be provided in the vicinity of ends of the bus bar electrodes.
Abstract:
A solar cell module is provided with: a plurality of solar cell elements each having a surface; a light diffusion portion provided in an outer peripheral area of the surface; and connection members which connect the plurality of solar cell elements. The outer peripheral area has restricted areas where formation of the light diffusion portion is restricted, in a part thereof, and the restricted areas are provided in positions where the outer peripheral area and the connection members intersect. The solar cell element may have, on the surface, bus bar electrodes which extend along the connection members. The restricted areas may be provided in the vicinity of ends of the bus bar electrodes.
Abstract:
A solar cell module manufacturing method is provided. This method includes: arranging a printing plate over a solar cell element in proximity to a surface of the solar cell element; providing a coating material on the printing plate; and moving a squeegee in a first direction so as to push out the coating material via the printing plate to the solar cell element, thereby applying the coating material in an outer peripheral area of the surface of the solar cell element.
Abstract:
A solar cell module manufacturing method is provided. This method includes: preparing a solar cell element that has a surface whose outer periphery is surrounded by a plurality of sides, an encapsulant that seals the solar cell elements, and a coating that has light diffusivity; applying the coating in an outer peripheral area of the surface via a printing plate that has a pattern corresponding to the outer peripheral area and in which a protection member is provided at a position that corresponds to a corner portion located between two sides of the plurality of sides, the two sides extending in directions that intersect with each other; and sealing, with the encapsulant, the solar cell element on which the coating is printed.
Abstract:
A solar cell element includes a plurality of finger electrodes and a bus bar electrode on a surface thereof. A light diffuser is provided in an outer circumferential region of the surface. The light diffuser includes first light diffusers provided along the left side and the right side of the surface, and second light diffusers provided along the upper side and the lower side of the surface. The width of the first light diffuser in a transverse direction perpendicular to the left side or the right side, is smaller than the width of the second light diffuser in a transverse direction perpendicular to the upper side or the lower side.
Abstract:
In a method for manufacturing a solar cell, a photoelectric conversion element, which has a surface whose outer periphery is surrounded by a plurality of sides, and a coating having light diffusivity are prepared. The coating is applied to an outer peripheral area of the surface by screen printing in a direction from a lower side, which is one of the sides, toward an upper side, which is one of the sides and which is opposed to the lower side such that an application amount of the coating to be applied along the lower side is smaller than an application amount of the coating to be applied along the upper side.
Abstract:
A solar cell module includes: a solar cell element that has a surface; a first sealing layer that is provided on the surface; and a light diffusion portion that is provided between an outer peripheral area C1 of the surface and the first sealing layer in such a manner that the light diffusion portion has a curvature and that contains a resin having a reflectivity higher than that of the first sealing layer.