Abstract:
A backlight unit and a display apparatus are provided. The display apparatus includes a power supply unit which outputs a first voltage; a light emitting unit which includes a first end connected to the power supply unit, and a second end, the first end receiving the first voltage from the power supply unit; and a compensation unit which includes a first end connected to the second end of the light emitting unit, and which compensates a deviation between the first voltage and a rated voltage of the light emitting unit.
Abstract:
A display apparatus, a backlight unit, a backlight providing method for controlling a plurality of light emitting diode (LED) strings are provided. The display apparatus includes a display panel, and a backlight unit (BLU) which projects backlight onto the display panel, wherein the BLU includes a plurality of light emitting diode (LED) strings, and a power supply unit which supplies minimum voltage from among the voltages needed to operate the plurality of LED strings to the plurality of LED strings. Therefore, the plurality of LED strings can have the same luminance.
Abstract:
A display apparatus is provided. The display apparatus includes: a display panel; and a backlight unit which provides the display panel with backlight. The backlight unit includes: a converter which converts a voltage of a received power and outputs an output power, a plurality of light source modules which receives the output power from the converter, and a control unit which determines powering conditions to operate the plurality of the light source modules in a specific state for each of the plurality of light source modules, and controls the converter sequentially based on the determined powering conditions.
Abstract:
A display apparatus and a backlight unit which control a plurality of lamps, and a display driving method are provided. The display apparatus includes a display, and a backlight unit which provides a backlight to the display. The backlight includes a plurality of lamps, and a lamp driver which adjusts a frequency of power supplied to the plurality of lamps until all of the plurality of lamps enter a running mode.
Abstract:
A backlight apparatus and a display apparatus are provided. The backlight apparatus includes N first switch units to switch a plurality of currents flowing in respective N light emitting element arrays according to an input brightness control signal, N second switch units to switch a plurality of currents flowing in respective N capacitors according to the input brightness control signal, and a reference current generation unit to generate and output a reference current based on the input brightness control signal. An inverter unit adjusts a total current supplied to all of the light emitting element arrays in total to be equal to the reference current if the total current is different from the reference current.
Abstract:
A high voltage power supply is provided. The high voltage power supply includes a soft-start circuit unit which outputs a natural voltage that decreases exponentially as time elapses and converts the natural voltage into a forced voltage having a predetermined scale if an enable signal is applied, a controller which compares the natural voltage output from the soft-start circuit unit with a reference voltage and outputs a control signal, and a converting unit which delays outputting a final voltage during a first predetermined time period and outputs the final voltage, which gradually increases as time elapses according to the control signal.
Abstract:
A display apparatus includes a display panel, a light source unit including a plurality of light sources that irradiate the display panel with light, a first control signal generating unit that inverts and forward rectifies a scan signal for scanning of the light source unit, a second control signal generating unit that inverts and backward rectifies an overdrive signal for overcurrent emission of the light source unit and has its output port coupled to an output port of the first control signal generating unit, and an inverter that supplies current to the light source unit based on a control signal output from the output port of the first control signal generating unit and the output port of the second control signal generating unit.
Abstract:
A wireless power transceiving system includes a power transmitting apparatus which converts power into a resonance wave and transmits the resonance wave, and a power receiving apparatus which receives the transmitted resonance wave and converts the resonance wave into DC power using a series resonant rectifier circuit which is impedance matched with impedance of the power receiving apparatus at a frequency of the resonance wave.
Abstract:
A current balancing apparatus, a power supply apparatus, a lighting apparatus, and a current balancing method for preventing luminance imbalance are provided. The current balancing apparatus includes a balancer for balancing an AC current and a rectifier for generating a DC current by rectifying the balanced current. Hence, the luminance imbalance caused by dispersion of a light source can be addressed.
Abstract:
A high voltage power supply is provided. The high voltage power supply includes an inverter which converts a DC voltage input to the high voltage power supply into a first AC voltage, a transformer including an input winding unit and a plurality of output winding units, wherein the input winding unit receives the first AC voltage from the inverter and the plurality of output winding units generates and outputs a second AC voltage, and a voltage multiplier unit which boosts the second AC voltage output by the transformer and outputs a boosted voltage, and the voltage multiplier unit includes a plurality of voltage multipliers which are connected to each other in series and the plurality of voltage multipliers may be connected to the plurality of output winding units respectively.