Abstract:
A magnetic random access memory (MRAM) cell includes an embedded MRAM and an access transistor. The embedded MRAM is formed on a number of metal-interposed-in-interlayer dielectric (ILD) layers, which each include metal dispersed therethrough and are formed on top of the access transistor. An magneto tunnel junction (MTJ) is formed on top of a metal formed in the ILD layers that is in close proximity to a bit line. An MTJ mask is used to pattern the MTJ and is etched to expose the MTJ. Ultimately, metal is formed on top of the bit line and extended to contact the MTJ.
Abstract:
A magnetic random access memory (MRAM) cell includes an embedded MRAM and an access transistor. The embedded MRAM is formed on a number of metal-interposed-in-interlayer dielectric (ILD) layers, which each include metal dispersed therethrough and are formed on top of the access transistor. An magneto tunnel junction (MTJ) is formed on top of a metal formed in the ILD layers that is in close proximity to a bit line. An MTJ mask is used to pattern the MTJ and is etched to expose the MTJ. Ultimately, metal is formed on top of the bit line and extended to contact the MTJ.
Abstract:
A method of flash-RAM memory includes non-volatile random access memory (RAM) formed on a monolithic die and non-volatile page-mode memory formed on top of the non-volatile RAM, the non-volatile page-mode memory and the non-volatile RAM reside on the monolithic die. The non-volatile RAM is formed of stacks of magnetic memory cells arranged in three-dimensional form for higher density and lower costs.
Abstract:
In accordance with a method of the present invention, a method of manufacturing a magnetic random access memory (MRAM) cell and a corresponding structure thereof are disclosed to include a multi-stage manufacturing process. The multi-stage manufacturing process includes performing a front end on-line (FEOL) stage to manufacture logic and non-magnetic portions of the memory cell by forming an intermediate interlayer dielectric (ILD) layer, forming intermediate metal pillars embedded in the intermediate ILD layer, depositing a conductive metal cap on top of the intermediate ILD layer and the metal pillars, performing magnetic fabrication stage to make a magnetic material portion of the memory cell being manufactured, and performing back end on-line (BEOL) stage to make metal and contacts of the memory cell being manufactured.
Abstract:
A sensing circuit includes a sense amplifier circuit having a first and second nodes through which a magnetic memory element is sensed. A first current source is coupled to the first node a second current source is coupled to the second node. A reference magnetic memory element has a resistance associated therewith and is coupled to the first node, the reference magnetic memory element receives current from the first current source. At least one memory element, having a resistance associated therewith, is coupled to the second node and receives current from the second current source. Current from the first current source and current from the second current source are substantially the same. The logic state of the at least one memory element is sensed by a comparison of the resistance of the at least one memory element to the resistance of the reference magnetic memory element.
Abstract:
A flash-RAM memory includes non-volatile random access memory (RAM) formed on a monolithic die and non-volatile page-mode memory formed on top of the non-volatile RAM, the non-volatile page-mode memory and the non-volatile RAM reside on the monolithic die.
Abstract:
A multi-state low-current-switching magnetic memory element (magnetic memory element) comprising a free layer, two stacks, and a magnetic tunneling junction is disclosed. The stacks and magnetic tunneling junction are disposed upon surfaces of the free layer, with the magnetic tunneling junction located between the stacks. The stacks pin magnetic domains within the free layer, creating a free layer domain wall. A current passed from stack to stack pushes the domain wall, repositioning the domain wall within the free layer. The position of the domain wall relative to the magnetic tunnel junction corresponds to a unique resistance value, and passing current from a stack to the magnetic tunnel junction reads the magnetic memory element's resistance. Thus, unique memory states may be achieved by moving the domain wall.
Abstract:
One embodiment of the present invention includes a non-volatile magnetic memory element including a fixed layer, a barrier layer formed on top of the fixed layer, and a free layer formed on top of the barrier layer, wherein the electrical resistivity of the barrier layer is reduced by placing said barrier layer under compressive stress. Compressive stress is induced by either using a compressive stress inducing layer, or by using inert gases at low pressure during the sputtering process as the barrier layer is deposited, or by introducing compressive stress inducing molecules into the molecular lattice of the barrier layer.
Abstract:
A multi-state low-current-switching magnetic memory element (magnetic memory element) comprising a free layer, two stacks, and a magnetic tunneling junction is disclosed. The stacks and magnetic tunneling junction are disposed upon surfaces of the free layer, with the magnetic tunneling junction located between the stacks. The stacks pin magnetic domains within the free layer, creating a free layer domain wall. A current passed from stack to stack pushes the domain wall, repositioning the domain wall within the free layer. The position of the domain wall relative to the magnetic tunnel junction corresponds to a unique resistance value, and passing current from a stack to the magnetic tunnel junction reads the magnetic memory element's resistance. Thus, unique memory states may be achieved by moving the domain wall.
Abstract:
A method of making a magnetic random access memory cell includes forming a magnetic tunnel junction (MTJ) on top of a wafer, depositing oxide on top of the MTJ, depositing a photo-resist layer on top of the oxide layer, forming a trench in the photo-resist layer and oxide layer where the trench has a width that is substantially the same as that of the MTJ. Then, the photo-resist layer is removed and a hard mask layer is deposited on top of the oxide layer in the trench and the wafer is planarized to remove the portion of the hard mask layer that is not in the trench to substantially level the top of oxide layer and the hard layer on the wafer. The remaining oxide layer is etched and the the MTJ is etched to remove the portion of the MTJ which is not covered by the hard mask layer.