Abstract:
Memory devices having a memory module, an interface, identification circuitry and a controller coupled to the memory module and the identification circuitry. The identification circuitry is configured to identify a selected operating mode from a plurality of signals sensed at the interface in response to a plurality of signals previously applied to the interface by the identification circuitry. The controller is operable to configure the memory device to the selected operating mode responsive to the identification circuitry.
Abstract:
Memory devices having a memory module, an interface, identification circuitry and a controller coupled to the memory module and the identification circuitry. The identification circuitry is configured to identify a selected operating mode from a plurality of signals sensed at the interface in response to a plurality of signals previously applied to the interface by the identification circuitry. The controller is operable to configure the memory device to the selected operating mode responsive to the identification circuitry.
Abstract:
A nonvolatile semiconductor mass storage system and architecture can be substituted for a rotating hard disk. The system and architecture avoid an erase cycle each time information stored in the mass storage is changed. Erase cycles are avoided by programming an altered data file into an empty mass storage block rather than over itself as a hard disk would. Periodically, the mass storage will need to be cleaned up. These advantages are achieved through the use of several flags, and a map to correlate a logical block address of a block to a physical address of that block. In particular, flags are provided for defective blocks, used blocks, and old versions of a block. An array of volatile memory is addressable according to the logical address and stores the physical address.
Abstract:
A nonvolatile semiconductor mass storage system and architecture can be substituted for a rotating hard disk. The system and architecture avoid an erase cycle each time information stored in the mass storage is changed. Erase cycles are avoided by programming an altered data file into an empty mass storage block rather than over itself as a hard disk would. Periodically, the mass storage will need to be cleaned up. These advantages are achieved through the use of several flags, and a map to correlate a logical block address of a block to a physical address of that block. In particular, flags are provided for defective blocks, used blocks, and old versions of a block. An array of volatile memory is addressable according to the logical address and stores the physical address.
Abstract:
An improved compact flash memory card system includes an improved compact flash memory card desktop adapter and an improved compact flash memory card. The improved compact flash memory card desktop adapter utilizes a fifty pin socket to interface with the compact flash memory card. The desktop adapter also utilizes a plug adapter to interface with a computer. For more efficient communication between the improved compact flash memory card and the computer, the improved desktop adapter adopts the universal serial bus architecture. The improved compact flash memory card utilizes a fifty pin connection to interface with a computer through an interface device. The fifty pin connection of the flash memory card can be used with different interface devices in a variety of configurations such as a universal serial bus mode, PCMCIA mode, and ATA IDE mode. Each of these modes of operation require different protocols. Upon initialization with an interface device, this improved compact flash memory card automatically detects which operation mode is used by this interface device and configures the memory card to be compatible with the present operation mode. Because all fifty pins of the flash memory card are occupied to either transfer data or provide control signals to and from the flash memory card, this improved flash memory card merely senses selected pins to determine the present mode of operation.
Abstract:
A semiconductor mass storage device can be substituted for a rotating hard disk. The device avoids an erase cycle each time information stored in the mass storage is changed. (The erase cycle is understood to include, fully programming the block to be erased, and then erasing the block.) Erase cycles are avoided by programming an altered data file into an empty mass storage block rather than over itself as a hard disk would. Periodically, the mass storage will need to be cleaned up. Secondly, a circuit for evenly using all blocks in the mass storage is provided. These advantages are achieved through the use of several flags, a map to directly correlate a logical address of a block to a physical address of that block and a count register for each block. In particular, flags are provided for defective blocks, used blocks, old version of a block, a count to determine the number of times a block has been erased and written and erase inhibit.
Abstract:
A multi-state current-switching magnetic memory element includes a stack of magnetic tunneling junction (MTJ) separated by a non-magnetic layer for storing more than one bit of information, wherein different levels of current applied to the memory element cause switching to different states.
Abstract:
A non-uniform switching based non-volatile magnetic memory element includes a fixed layer, a barrier layer formed on top of the fixed layer, a first free layer formed on top of the barrier layer, a non-uniform switching layer (NSL) formed on top of the first free layer, and a second free layer formed on top of the non-uniform switching layer. Switching current is applied, in a direction that is substantially perpendicular to the fixed layer, barrier layer, first free layer, non-uniform switching layer and the second free layer causing switching between states of the first free layer, second free layer and non-uniform switching layer with substantially reduced switching current.
Abstract:
A flash-RAM memory includes non-volatile random access memory (RAM) formed on a monolithic die and non-volatile page-mode memory formed on top of the non-volatile RAM, the non-volatile page-mode memory and the non-volatile RAM reside on the monolithic die. The non-volatile RAM is formed of stacks of magnetic memory cells arranged in three-dimensional form for higher density and lower costs.
Abstract:
Apparatus and methods provide for configuring a peripheral device in response to applying defined sets of signals to input/output terminals of the peripheral device, sensing the signals at those input/output terminals after applying the defined sets of signals, and comparing the sensed signals with the defined sets of signals.