摘要:
Methods of fabricating complex three-dimensional structures on patterned substrates and related compositions are provided. The methods involve depositing on the substrate a block copolymer material that is “mismatched” to the substrate pattern, and then ordering the material to form a complex three-dimensional structure. According to various embodiments, the copolymer material mismatches the substrate pattern in that the symmetry and/or length scale of its bulk morphology differs from that of the pattern. When ordered, a balance between the physics that determines the bulk block copolymer morphology and the physics that determines the substrate surface interfacial interactions results in a thermodynamically stable complex three-dimensional film that varies in a direction perpendicular to the substrate and has a morphology that differs from its bulk morphology.
摘要:
Methods of fabricating complex three-dimensional structures on patterned substrates and related compositions are provided. The methods involve depositing on the substrate a block copolymer material that is “mismatched” to the substrate pattern, and then ordering the material to form a complex three-dimensional structure. According to various embodiments, the copolymer material mismatches the substrate pattern in that the symmetry and/or length scale of its bulk morphology differs from that of the pattern. When ordered, a balance between the physics that determines the bulk block copolymer morphology and the physics that determines the substrate surface interfacial interactions results in a thermodynamically stable complex three-dimensional film that varies in a direction perpendicular to the substrate and has a morphology that differs from its bulk morphology.
摘要:
Methods of fabricating complex three-dimensional structures on patterned substrates and related compositions are provided. The methods involve depositing on the substrate a block copolymer material that is “mismatched” to the substrate pattern, and then ordering the material to form a complex three-dimensional structure. According to various embodiments, the copolymer material mismatches the substrate pattern in that the symmetry and/or length scale of its bulk morphology differs from that of the pattern. When ordered, a balance between the physics that determines the bulk block copolymer morphology and the physics that determines the substrate surface interfacial interactions results in a thermodynamically stable complex three-dimensional film that varies in a direction perpendicular to the substrate and has a morphology that differs from its bulk morphology.
摘要:
Methods of directing the self assembly of block copolymers on chemically patterned surfaces to pattern discrete or isolated features needed for applications including patterning integrated circuit layouts are described. According to various embodiments, these features include lines, t-junctions, bends, spots and jogs. In certain embodiments a uniform field surrounds the discrete feature or features. In certain embodiments, a layer contains two or more distinct regions, the regions differing in one or more of type of feature, size, and/or pitch. An example is an isolated spot at one area of the substrate, and a t-junction at another area of the substrate. These features or regions of features may be separated by unpatterned or uniform fields, or may be adjacent to one another. Applications include masks for nanoscale pattern transfer as well as the fabrication of integrated circuit device structures.
摘要:
Methods of directing the self assembly of block copolymers on chemically patterned surfaces to pattern discrete or isolated features needed for applications including patterning integrated circuit layouts are described. According to various embodiments, these features include lines, t-junctions, bends, spots and jogs. In certain embodiments a uniform field surrounds the discrete feature or features. In certain embodiments, a layer contains two or more distinct regions, the regions differing in one or more of type of feature, size, and/or pitch. An example is an isolated spot at one area of the substrate, and a t-junction at another area of the substrate. These features or regions of features may be separated by unpatterned or uniform fields, or may be adjacent to one another. Applications include masks for nanoscale pattern transfer as well as the fabrication of integrated circuit device structures.
摘要:
Methods of directing the self assembly of block copolymers on chemically patterned surfaces to pattern discrete or isolated features needed for applications including patterning integrated circuit layouts are described. According to various embodiments, these features include lines, t-junctions, bends, spots and jogs. In certain embodiments a uniform field surrounds the discrete feature or features. In certain embodiments, a layer contains two or more distinct regions, the regions differing in one or more of type of feature, size, and/or pitch. An example is an isolated spot at one area of the substrate, and a t-junction at another area of the substrate. These features or regions of features may be separated by unpatterned or uniform fields, or may be adjacent to one another. Applications include masks for nanoscale pattern transfer as well as the fabrication of integrated circuit device structures.
摘要:
Methods of directing the self assembly of block copolymers on chemically patterned surfaces to pattern discrete or isolated features needed for applications including patterning integrated circuit layouts are described. According to various embodiments, these features include lines, t-junctions, bends, spots and jogs. In certain embodiments a uniform field surrounds the discrete feature or features. In certain embodiments, a layer contains two or more distinct regions, the regions differing in one or more of type of feature, size, and/or pitch. An example is an isolated spot at one area of the substrate, and a t-junction at another area of the substrate. These features or regions of features may be separated by unpatterned or uniform fields, or may be adjacent to one another. Applications include masks for nanoscale pattern transfer as well as the fabrication of integrated circuit device structures.
摘要:
Methods of directed self-assembly of multi-block (i.e., triblock and higher-order) copolymers on patterned substrates and related compositions are provided. According to various embodiments, the methods involve depositing copolymer materials on substrates configured to drive the assembly of micro-phase separated films that exhibit the same morphology as that copolymer materials in the bulk. In certain embodiments, binary patterns are used to drive the triblock copolymer films. The binary two-dimensional surface patterns are transformed into three-component and three-dimensional structures throughout the thickness of the overlying copolymer films.
摘要:
Methods of directed self-assembly of multi-block (i.e., triblock and higher-order) copolymers on patterned substrates and related compositions are provided. According to various embodiments, the methods involve depositing copolymer materials on substrates configured to drive the assembly of micro-phase separated films that exhibit the same morphology as that copolymer materials in the bulk. In certain embodiments, binary patterns are used to drive the triblock copolymer films. The binary two-dimensional surface patterns are transformed into three-component and three-dimensional structures throughout the thickness of the overlying copolymer films.
摘要:
Methods to pattern substrates with dense periodic nanostructures that combine top-down lithographic tools and self-assembling block copolymer materials are provided. According to various embodiments, the methods involve chemically patterning a substrate, depositing a block copolymer film on the chemically patterned imaging layer, and allowing the block copolymer to self-assemble in the presence of the chemically patterned substrate, thereby producing a pattern in the block copolymer film that is improved over the substrate pattern in terms feature size, shape, and uniformity, as well as regular spacing between arrays of features and between the features within each array compared to the substrate pattern. In certain embodiments, the density and total number of pattern features in the block copolymer film is also increased. High density and quality nanoimprint templates and other nanopatterned structures are also provided.