摘要:
Fuel cell power plants (19, 47, 60, 86, 102, 112, 121) include recycle fuel from a fuel exit (29) of the last fuel flow field (23, 52, 64, 89) of a series of flow fields (20-23; 49-52; 61-64; 87-89) labeled M−N through M, applied either to the Mth flow fields or both the Mth and the (M−1)th flow fields. The fuel recycle impeller is a blower (30), an ejector (30b) or an electrochemical hydrogen pump (30c). Fuel from a source (77) may be applied both to the first fuel flow field (87) and an additional fuel flow field (88, 74, 75, 89) of a series of flow fields to reduce pressure drop and flow rate requirements in the first of the series of flow fields and assure more fuel in the additional fuel flow field. Flow to the additional fuel flow field may be controlled by voltage (126) in such field or fuel content (128) of its exhaust. Transient fuel volume is provided by a tank (125).
摘要:
The invention is a hydrogen passivation shut down system for a fuel cell power plant (10). An anode flow path (24) is in fluid communication with an anode catalyst (14) for directing hydrogen fuel to flow adjacent to the anode catalyst (14), and a cathode flow path (38) is in fluid communication with a cathode catalyst (16) for directing an oxidant to flow adjacent to the cathode catalyst (16) of a fuel cell (12). Hydrogen fuel is permitted to transfer between the anode flow path (24) and the cathode flow path (38). A hydrogen reservoir (66) is secured in fluid communication with the anode flow path (24) for receiving and storing hydrogen during fuel cell (12) operation, and for releasing the hydrogen into fuel cell (12) whenever the fuel cell (12) is shut down.
摘要:
The invention is a hydrogen passivation shut down system for a fuel cell power plant (10). An anode flow path (24) is in fluid communication with an anode catalyst (14) for directing hydrogen fuel to flow adjacent to the anode catalyst (14), and a cathode flow path (38) is in fluid communication with a cathode catalyst (16) for directing an oxidant to flow adjacent to the cathode catalyst (16) of a fuel cell (12). Hydrogen fuel is permitted to transfer between the anode flow path (24) and the cathode flow path (38). A hydrogen reservoir (66) is secured in fluid communication with the anode flow path (24) for receiving and storing hydrogen during fuel cell (12) operation, and for releasing the hydrogen into fuel cell (12) whenever the fuel cell (12) is shut down.
摘要:
The invention is a hydrogen passivation shut down system for a fuel cell power plant (10). An anode flow path (24) is in fluid communication with an anode catalyst (14) for directing hydrogen fuel to flow adjacent to the anode catalyst (14), and a cathode flow path (38) is in fluid communication with a cathode catalyst (16) for directing an oxidant to flow adjacent to the cathode catalyst (16) of a fuel cell (12). Hydrogen fuel is permitted to transfer between the anode flow path (24) and the cathode flow path (38). A hydrogen reservoir (66) is secured in fluid communication with the anode flow path (24) for receiving and storing hydrogen during fuel cell (12) operation, and for releasing the hydrogen into the fuel cell (12) whenever the fuel cell (12) is shut down.
摘要:
A fuel cell system that includes fuel processing components, such as a reformer and shift converter, for converting an organic fuel to hydrogen, is shut-down by disconnecting the fuel cell from its load and purging the fuel processing components of residual hydrogen with a flow of air. The purge air may be forced through the components in series or in parallel, using a blower; or, the purge air may be allowed to enter the components through a low inlet, whereupon the air rises through the components by natural circulation and exits through a high outlet, along with the residual hydrogen.
摘要:
A fuel cell stack has a cascaded fuel flow field in which groups (10-12) of fuel cells (13, 13a) are arranged in flow-series, there being a fuel purge inlet valve (33) to provide fuel flow directly to two of the groups (11-12) downstream in the series, and a fuel purge outlet valve (36) to vent fuel flow directly from the first and second groups (10, 11) of fuel cells (13), whereby to avoid large pressure drop in the lowest group (12) of the series, to thereby facilitate quick purging of the fuel flow field. In other embodiments, rotary gates (40, 41) or sliding gates (56, 57) within manifolds cause fuel to flow into and out of all three groups directly during a purge.
摘要:
The invention is a start up system and method for a fuel cell power plant (10) using a purging of the cathode flow field (38) with a hydrogen rich reducing fluid fuel to minimize corrosion of the cathode electrode (16). The method for starting up the shut down fuel cell power plant (10) includes the steps of: a. purging the cathode flow field (38) with the reducing fluid fuel; b. then, directing the reducing fluid fuel to flow through an anode flow field (28); c. next, terminating flow of the fuel through the cathode flow field (38) and directing an oxygen containing oxidant to flow through the cathode flow field (38); and, d. finally, connecting a primary load (70) to the fuel cell (12) so that electrical current flows from the fuel cell (12) to the primary load (70).
摘要:
A fuel cell includes an electrode assembly having an electrolyte between a cathode catalyst and an anode catalyst, and a flow field plate having a channel for delivering a reactant gas to the electrode assembly. The flow field plate includes a channel having a channel inlet. A porous diffusion layer is located between the electrode assembly and the flow field plate. The porous diffusion layer includes a first region near the channel inlet and a second region downstream from the first region relative to the channel inlet. The first region includes a filler material that partially blocks pores of the first region such that the first region has a first porosity and the second region has a second porosity that is greater than the first porosity.
摘要:
A fuel cell power plant (10) having a fuel concentration sensor cell (54) is disclosed for detecting a concentration of fuel in a fuel cell (12) of the plant (10). A portion of a fuel exhaust stream is directed to flow through the sensor cell (54) adjacent to a membrane electrode assembly (60) of the sensor cell (54). A power circuit (62) may or may not deliver an electrical current to the cell (12), while changes in voltage across the cell (12) that are proportional to changes in hydrogen concentrations within the fuel exhaust stream are detected by a detector (68) which communicates the changes to a controller (108) for controlling a rate of fuel supply to the fuel cell (12). A porous sensor water transport plate (74) cools, humidifies delivers and removes liquid from the sensor cell (12).
摘要:
A solar power system includes a solar energy collector that has at least one solar receiver that is operable to carry a working fluid and at least one solar reflector that is operable to direct solar energy towards the at least one solar receiver to heat the working fluid. The working fluid has a maximum predefined operational temperature up to which it can be heated. A first storage unit is connected to receive the working fluid from the at least one solar receiver, and a second storage unit is connected to provide the working fluid to the at least one solar receiver. A power block generates electricity using heat from the heated working fluid. A heater is operable to heat the working fluid to approximately the maximum predefined operational temperature.