Abstract:
A variable-speed direct current motor comprising a stator (22), a rotor (23) arranged within the stator, and a motor drive device (40) arranged partly at the stator and partly at the rotor, wherein the stator comprises a yoke (25) defining a cylindrical cavity (31), and a plurality of permanent magnets (24) arranged at the yoke, wherein the rotor comprises a cylindrical core (26) and a conductor structure (47) arranged at the core, wherein the motor drive device comprises an alternating current transformer (41) having a primary winding (42) arranged at the stator and a secondary winding (43) arranged at the rotor, a rectifier device (44) arranged at the rotor and connected with the secondary winding, a direct current supply device (45) arranged at the rotor (23) and connected with the rectifier device (44), and with the conductor structure (47), and an operation control device (48) comprising a first unit (49) arranged at the rotor (23) and a second unit (50) arranged externally of the rotor and wirelessly communicating with the first unit.
Abstract:
A variable-speed direct current motor comprising a stator (22), a rotor (23) arranged within the stator, and a motor drive device (40) arranged partly at the stator and partly at the rotor, wherein the stator comprises a yoke (25) defining a cylindrical cavity (31), and a plurality of permanent magnets (24) arranged at the yoke, wherein the rotor comprises a cylindrical core (26) and a conductor structure (47) arranged at the core, wherein the motor drive device comprises an alternating current transformer (41) having a primary winding (42) arranged at the stator and a secondary winding (43) arranged at the rotor, a rectifier device (44) arranged at the rotor and connected with the secondary winding, a direct current supply device (45) arranged at the rotor (23) and connected with the rectifier device (44), and with the conductor structure (47), and an operation control device (48) comprising a first unit (49) arranged at the rotor (23) and a second unit (50) arranged externally of the rotor and wirelessly communicating with the first unit.
Abstract:
The torque sensor has a body. A first gastight chamber is defined at least partly by the body. A pressure sensor is connected with the gastight chamber for measuring the pressure in the gastight chamber. A pressure to torque converter is connected to the pressure sensor. The gastight chamber is arranged to change its volume by deformation of the body when the body is subjected to a torque wherein the volume change causes a change of pressure of the enclosed gas in the gastight chamber.
Abstract:
The torque sensor has a body. A first gastight chamber is defined at least partly by the body. A pressure sensor is connected with the gastight chamber for measuring the pressure in the gastight chamber. A pressure to torque converter is connected to the pressure sensor. The gastight chamber is arranged to change its volume by deformation of the body when the body is subjected to a torque wherein the volume change causes a change of pressure of the enclosed gas in the gastight chamber.
Abstract:
The three-in-one marcel waver with curling method in the field of hairdressing device is described, including the first hairdressing section, the second hairdressing section and a base. The first hairdressing section is movably connected to the base, and the second hairdressing section is fixedly connected to the base. The second hairdressing section consists of perming unit, combing unit, and switch button, with perming unit and switch button at the inner side, and the combing unit at the outer side. The perming unit links the second hairdressing section thanks to the arc-shaped transitional edges designed laterally. The combing unit comprises the first comb, the second comb, holder, the second comb hole, and the first comb hole. The holder has the second comb hole and the first comb hole. The invention features the integrated design of splint, electric comb and hair curler, meeting the needs of various hairstyles of terminal customers, and providing better user experience by catering to consumer demand.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communication. More particularly, certain aspects of the present disclosure relate to early termination of a downlink channel repetition transmission, early termination of an uplink channel repetition, and/or determination of a plurality of beams for a repetition transmission. Numerous other aspects are provided.
Abstract:
Various methods for providing a multi-dimensional data interface are provided. One example method may include receiving first data navigation instructions for navigating data in a first dimension or a second dimension via a first user interface device, causing a presentation of the data to be modified within the first dimension or the second dimension in response to at least receiving the first data navigation instructions, receiving second data navigation instructions for navigating the data in a third dimension via a second user interface device, and causing the presentation of the data to be modified within a third dimension in response to at least receiving the second data navigation instructions. Similar and related example methods, example apparatuses, and example computer program products are also provided.
Abstract:
A system and methods for estimating a noise power level in an uplink signal for a virtual MIMO system is disclosed. The system comprises a demodulation reference signal (DMRS) module configured to obtain a DMRS receive symbol from the uplink signal and determine a DMRS sequence for a first UE in the virtual MIMO system. An autocorrelation module is configured to calculate an average autocorrelation value for the subcarriers in the uplink signal. A cross-correlation module is configured to calculate first and second cross-correlation values of the uplink signal Rz (l) for values of l selected such that the sum of the received power from the first UE and the second UE can be accurately estimated. A noise power level module is configured to determine the noise power level for the uplink signal using the average autocorrelation value and the first and second cross correlation values.
Abstract:
The present invention is directed to certain novel compounds represented by Formula (I) and pharmaceutically acceptable salts, solvates, hydrates and prodrugs thereof. The present invention is also directed to methods of making and using such compounds and pharmaceutical compositions containing such compounds to treat or control a number of diseases mediated by PPAR such as glucose metabolism, lipid metabolism and insulin secretion, specifically Type 2 diabetes, hyperinsulinemia, hyperlipidemia, hyperuricemia, hypercholesteremia, atherosclerosis, one or more risk factors for cardiovascular disease, Syndrome X, hypertriglyceridemia, hyperglycemia, obesity and eating disorders.
Abstract:
The present invention provides a compounds the formula (IV): and methods for producing an α-(phenoxy)phenylacetic acid compound of the formula: wherein R1 is a member selected from the group consisting of: each R2 is a member independently selected from the group consisting of (C1-C4)alkyl, halo, (C1-C4)haloalkyl, amino, (C1-C4)aminoalkyl, amido, (C1-C4)amidoalkyl, (C1-C4)sulfonylalkyl, (C1-C4)sulfamylalkyl, (C1-C4)alkoxy, (C1-C4)heteroalkyl, carboxy and nitro; the subscript n is 1 when R1 has the formula (a) or (b) and 2 when R1 has the formula (c) or (d); the subscript m is an integer of from 0 to 3; * indicates a carbon which is enriched in one stereoisomeric configuration; and the wavy line indicates the point of attachment of R1; and compounds