摘要:
A superconducting coil for a magnetic resonance apparatus is formed by one or more wound superconducting conductors that are embedded in a cured sealing compound, with a filler composed only of nanoparticles added to the sealing compound.
摘要:
Casting compound suitable for casting an electronic module, in particular a large-volume coil such as a gradient coil, which is composed of a support material forming a matrix, one or more fillers made of inorganic microparticles, and at least one filler made of polymer nanoparticles.
摘要:
Casting compound suitable for casting an electronic module, in particular a large-volume coil such as a gradient coil, which is composed of a support material forming a matrix, one or more fillers made of inorganic microparticles, and at least one filler made of polymer nanoparticles.
摘要:
A superconducting coil for a magnetic resonance apparatus is formed by one or more wound superconducting conductors that are embedded in a cured sealing compound, with nanoparticles added to the sealing compound.
摘要:
An arrangement for cooling a gradient coil has cooling tubes for coolant transport arranged for heat dissipation from coil positions of the gradient coil. Insulator plates for electrical insulation are arranged both between the coil positions and between the coil positions and the respective cooling tubes. The insulator plates include fabric layers (prepregs) that are impregnated with a reaction resin. The insulator plates exhibit a heat conductivity of greater than or equal to 0.5 W/mK.
摘要:
The invention relates to a heat transfer medium including a mixture containing elemental sulphur and at least one additive and a use of the heat transfer medium. A heat transfer medium including a mixture containing elemental sulphur and at least one additive is indicated. The heat transfer medium is characterized in that the additive includes at least one halogenated hydrocarbon. The halogenated hydrocarbon is, in particular, a chlorinated and/or brominated paraffin. The heat transfer medium is used for reversible energy storage. The heat transfer medium is preferably used for operating a solar thermal power station for converting solar energy into electric energy. Sunlight is converted into heat energy of the heat transfer medium.
摘要:
A method for encapsulating an optoelectronic component by depositing a diffusion barrier for protection against environmental influences by means of an atmospheric pressure plasma on at least one subarea of the surface of the optoelectronic component.
摘要:
An electrical insulation paper that is made of mica flakelets (22), having an average size range of 0.01 to 0.05 mm in their thinnest dimension, hexagonal boron nitride (26), which has an average size range of 10 to 1,000 nm in their longest dimension, and a resin matrix. The mica flakelets and the hexagonal boron nitride are mixed and formed into a paper (17), and the resin is added to the paper after formation, the ratio by weight of the hexagonal boron nitride to the mica flakelets is directly proportional to the average size of the hexagonal boron nitride compared to the average size of the mica flakelets, within an adjustment factor.
摘要:
An electrical insulation paper that is made of mica flakelets (22), having an average size range of 0.01 to 0.05 mm in their thinnest dimension, hexagonal boron nitride (26), which has an average size range of 10 to 1,000 nm in their longest dimension, and a resin matrix. The mica flakelets and the hexagonal boron nitride are mixed and formed into a paper (17), and the resin is added to the paper after formation, the ratio by weight of the hexagonal boron nitride to the mica flakelets is directly proportional to the average size of the hexagonal boron nitride compared to the average size of the mica flakelets, within an adjustment factor.
摘要:
A method for encapsulating an optoelectronic component by depositing a diffusion barrier for protection against environmental influences by means of an atmospheric pressure plasma on at least one subarea of the surface of the optoelectronic component.