摘要:
A method for power measurements in a cellular communication system comprises receiving measurement configuration orders. Operation of a power meter is controlled in dependence on the measurement configuration orders. Reference signal received powers are measured. A measurement report is compiled and transmitted. The measurement configuration orders comprise cell status information associated with neighbouring cells and measurement instructions that are dependent of the cell status of respective cell. The cell status information comprises information about whether the neighbouring cell is of a different type than the serving cell. Controlling of the operation of the power meter and/or compiling of the measurement report is performed in dependence on the cell status of the neighbouring cell. A method for handover based on such measurement reports is also disclosed as well as Node Bs and user equipments configured to perform such methods.
摘要:
The present invention relates to a method and apparatus for user terminal and bearer identification that reduces the overhead for LTE relaying (layer 2 and layer 3), which will save radio resources on the backhaul link. Reduction in overhead is achieved by providing a more efficient mechanism for user terminal and bearer identification as compared to using GTP-u and associated UDP/IP headers.
摘要:
A method for power measurements in a cellular communication system comprises receiving measurement configuration orders. Operation of a power meter is controlled in dependence on the measurement configuration orders. Reference signal received powers are measured. A measurement report is compiled and transmitted. The measurement configuration orders comprise cell status information associated with neighboring cells and measurement instructions that are dependent of the cell status of respective cell. The cell status information comprises information about whether the neighboring cell is of a different type than the serving cell. Controlling of the operation of the power meter and/or compiling of the measurement report is performed in dependence on the cell status of the neighboring cell. A method for handover based on such measurement reports is also disclosed as well as Node Bs and user equipments configured to perform such methods.
摘要:
The present invention relates to a method and apparatus for user terminal and bearer identification that reduces the overhead for LTE relaying (layer 2 and layer 3), which will save radio resources on the backhaul link. Reduction in overhead is achieved by providing a more efficient mechanism for user terminal and bearer identification as compared to using GTP-u and associated UDP/IP headers.
摘要:
A method is implemented in an anchor eNodeB of a network, where the anchor eNodeB communicates with a self-backhauled eNodeB via a radio interface and where the network further includes another eNodeB. The method includes determining whether a user equipment (UE) is being handed off from the first self-backhauled eNodeB to the other eNodeB. The determining is based on: receiving (820) a message from the self-backhauled eNodeB via the radio interface instructing the anchor eNodeB to stop delivering packets that are destined for the UE, or sniffing (1 105, 1 1 10, 1 1 15) into one or more messages sent from the self-backhauled eNodeB to the other eNodeB to identify that the UE is being handed off from the self-backhauled eNodeB to the other eNodeB. The method further includes storing (1 120), based on the determination of whether the UE is being handed off, received packets intended for the UE: and forwarding (1 120) the stored packets to the other eNodeB via a transport network for delivery to the UE.
摘要:
Systems and methods for the configuration of network nodes without a secured connection in a telecommunications system are described herein. These network nodes can be wireless network nodes which are part of the network infrastructure, such as, wireless relays, wireless repeaters and self-back-hauled eNodeBs.
摘要:
Home base station nodes (110) that support multi-carrier operation are disclosed. In some embodiments, two carrier signals are transmitted on different frequencies to one or more user devices that support multi-carrier operation, and different global cell identifiers are broadcast on the two carrier signals. Control messages are sent and received for both of the two carrier signals over a single control-plane interface between the home base station (110) and either a core network node (170) or a home base station gateway (120).
摘要:
Methods and apparatuses for enabling frequency selective repetition of signals in a telecommunication system in which aggregation of component carriers is applied. Information signals are received (1102) in a first set of frequency bands, which is defined to cover anchor carriers, which can be used by both legacy and non-legacy terminals. Further, information is received (1104) in a second set of frequency bands, which is defined to cover non-anchor carriers, which only can be used by non-legacy terminals. Instructions concerning which frequency band(s) that should be repeated by the repeater node, are also received (1106). Thereafter, the frequency bands indicated in the instructions are filtered out (1110), after which these frequency bands or parts are repeated by the repeater node. This results in enabling frequency selective repetition in a system which may comprise legacy mobile, which limits the interference in the system, which enables higher bitrates and saves energy.
摘要:
A method manages bearers over a first wireless link between a self-backhauled base station and a base station, where the self-backhauled base station serves one or more user equipments (UEs) via one or more second wireless links in a network. The method is implemented at the self-backhauled base station and includes identifying changes in numbers and/or characteristics of UE bearers multiplexed onto a backhaul bearer associated with the first wireless link. The method further includes dynamically reconfiguring resources allocated to the backhaul beare.
摘要:
A method is implemented in an anchor eNodeB of a network, where the anchor eNodeB communicates with a self-backhauled eNodeB via a radio interface and where the network further includes another eNodeB. The method includes determining whether a user equipment (UE) is being handed off from the first self-backhauled eNodeB to the other eNodeB. The determining is based on: receiving (820) a message from the self-backhauled eNodeB via the radio interface instructing the anchor eNodeB to stop delivering packets that are destined for the UE, or sniffing (1 105, 1 1 10, 1 1 15) into one or more messages sent from the self-backhauled eNodeB to the other eNodeB to identify that the UE is being handed off from the self-backhauled eNodeB to the other eNodeB. The method further includes storing (1 120), based on the determination of whether the UE is being handed off, received packets intended for the UE: and forwarding (1 120) the stored packets to the other eNodeB via a transport network for delivery to the UE.