摘要:
Addition polymerization catalysts comprising a derivative of a titanium or zirconium in the +4 oxidation state prepared by metal center oxidation and cation complex formation of a reduced metal precursor complex via electron transfer in a single step by use of a neutral organic oxidant, optionally in the presence of a Lewis acid mitigator.
摘要:
Group 4 metal complexes useful as addition polymerization catalysts are prepared by electrolysis of cyclopentadienyl metal complexes under inert electrolysis conditions.
摘要:
Novel catalytic derivatives of titanium or zirconium complexes containing one and only one cyclic delocalized, anionic, .PI.-bonded group wherein the metal is in the +2 formal oxidation state and having a bridged ligand structure and an activating cocatalyst are useful as catalysts for polymerizing olefins, diolefins and/or acetylenically unsaturated monomers.
摘要:
A process for polymerizing olefins, diolefins and/or acetylenically unsaturated monomers using novel catalyst compositions comprising titanium or zirconium complexes containing one and only one cyclic delocalized, anionic, .pi.-bonded group wherein the metal is in the +2 formal oxidation state and having a bridged ligand structure, also referred to as constrained geometry complexes, and an activating cocatalyst.
摘要:
Group 4 metal complexes useful as addition polymerization catalysts are prepared by electrolysis of cyclopentadienyl metal complexes under inert electrolysis conditions.
摘要:
Catalyst systems useful in addition polymerization reactions comprising a Group 4 metal complex and a silylium salt activating cocatalyst are prepared by contacting the metal complex with a silylium salt of a compatible, non-coordinating anion, optionally the silylium salt is prepared by electrochemical oxidation and splitting of the corresponding disilane compound.
摘要:
A water-based polymer composition containing a polyvalent metal complex and a polymer having pendant strong cationic groups and weak acid salt groups forms fast dry-to-the-touch coatings that are resistant to water and many organic solvents. These coatings can be removed with ammonia-containing solvents.
摘要:
Described is a membrane electrode assembly having an ion exchange membrane, and at least two active layers positioned on the same side of the membrane; wherein the active layers containing catalytically-active particles and an ionomer; the average equivalent weights of the ionomers in the layers differ by at least 50; and the active layer positioned closest to the membrane contains the ionomer with the lower average equivalent weight. This membrane electrode assembly, when utilized in a fuel cell, provides a relatively high voltage at a given current density and gas flow rate.
摘要:
A composition comprising (a) catalytically-active particles, (b) an organic compound having a pKa of at least about 18 and a basicity parameter, .beta., of less than 0.66, and (c) a polymeric binder. Also described is a process for preparing a membrane/electrode assembly, which comprises the sequential steps of (i) applying a layer of the composition of the invention to a solid polymer electrolyte, a carbon fiber paper, or a release substrate; (ii) heating the composition under conditions sufficient to volatilize at least 95 percent of component (b); and (iii) positioning the composition in contact with the solid polymer electrolyte, if the composition was not applied directly to the solid polymer electrolyte, forming the membrane/electrode assembly thereby. It has been discovered that the composition and process of the invention, when used to prepare a membrane electrode assembly (MEA) having a solid polymer electrolyte, provides an MEA which provides a relatively high voltage at a given current density and gas flow rate in a fuel cell.
摘要:
An electrochemical fuel cell having a membrane electrode assembly and a layer of an electrically conductive porous material adjacent thereto which has at least two portions with different mean pore sizes, wherein a first portion of the layer adjacent to the membrane electrode assembly has a porosity no greater than a second portion of the layer adjacent to the opposite side of the layer; the second portion has a porosity of at least about 82 percent; and the second portion has an mean pore size which is at least about 10 microns and at least ten times greater than the mean pore size of the first portion.