Abstract:
A method of transferring proppant materials, wherein the method includes providing a first pressurized container (102) containing proppant materials on a first vessel (106). The method also includes connecting the first pressurized container (102) on the first vessel (106) to a second container (102) on a second vessel (114) and transferring pneumatically, proppant materials from the first pressurized container (102) on the first vessel (106) to the second container (102) on the second vessel (114). Also, a method of transferring proppant materials, the method including removing a wellbore fluid comprising excess proppant materials from a well, and screening the excess proppant materials from the wellbore fluid. The method also includes transferring the excess proppant materials to a first pressurized container (102) and transferring pneumatically, the excess proppant materials from the first pressurized container to a second pressurized container.
Abstract:
A system for mixing fluids for oilfield applications, the system including a first storage vessel (101) configured to hold a first material and a first mixing device (108) in fluid communication with the first storage vessel. The system also including a second mixing device (115) in fluid communication with the first mixing device and a second storage vessel (102) in fluid communication with the second mixing device, wherein the second storage vessel is configured to hold a second material. Additionally, the system including a pump (109) in fluid communication with at least the second storage vessel and the first mixing device, wherein the pump is configured to provide a flow of the second material from the second storage vessel to the first mixing device, and wherein the first mixing device is configured to mix the first material and the second material to produce a wellbore fluid.
Abstract:
A system for storing cuttings including a drilling rig having a deck and at least two support structures, and at least one cuttings storage vessel disposed in at least one of the at least two support structures is disclosed. A method of storing cuttings on a drilling rig including transferring materials from a deck of the drilling rig to a pressurized vessel dispose din a support structure of the drilling rig is also disclosed.
Abstract:
Described herein are representative embodiments of amplifier bypass paths and amplifiers using such bypass paths. In certain exemplary embodiments, the amplifiers are operated as linear power amplifiers, such as may be used in wireless communications systems. According to one exemplary embodiment, an amplifier circuit is described comprising an amplifier path coupled between a first node and a second node. The amplifier path comprises one or more amplifiers. The circuit further comprises a bypass path coupled between the first node and the second node. The bypass path comprises two impedance inverting networks and a ground path that is selectively coupled to the bypass path at a third node located between the two impedance inverting networks. In this embodiment, the third node is configured to remain coupled to the two impedance inverting networks when the ground path is coupled to the bypass path.
Abstract:
A method for presenting data comprises receiving the data; and deriving a multi-level dynamic hierarchical structure for the data based on drilldown sequences input from a user, wherein the drilldown sequences automatically compute a graphical visual comparison of the data and comprise: deriving a multi-pixel bar chart to display an aggregated data paradigm; and deriving a graphical illustration to display a data distribution paradigm.
Abstract:
A surface acoustic wave device including a thin layer of piezoelectric material, a layer of molecular bonder, and a carrier substrate. The thin layer constitutes an acoustic energy guide that augments the performance characteristics of the device. A method for making the acoustic wave device includes a step of molecular bonding between a carrier substrate and a piezoelectric substrate, and then a step for reducing the thickness of the piezoelectric substrate.
Abstract:
The present invention discloses a gas burner for a solid fuel effect gas fire. The burner comprises an integrally formed metal casing defining a gas/air mix chamber. A gas/air mix supply pipe connects with the chamber and a number of burner bores are provided in a wall of the casing. Simulated solid fuel elements can then be located above or on the said wall of the casing so as to not close said burner bores. Age will not affect the performance of the burner as can happen in prior art burners where the casing is formed by an open trough closed by a ceramic plaque where gas/air mix bores extend through the ceramic plaque which is moulded with a number of simulated fuel elements on its upper surface, and sealed by mastic or filler to the rim of the trough which mastic deteriorates with age.
Abstract:
The present invention provides a method and apparatus for separating air from a fluid, such as syrup, as the fluid enters a first chamber of a system; passing the fluid from the first chamber to a second chamber via a first device; passing the air from the first chamber to the second chamber via a second device so as to reintroduce the air back into the fluid and form a new fluid mixture having more uniform air bubbles; and discharging the new fluid out of the system.
Abstract:
A method for generating a pixel-oriented graph provides visual boundaries for representing aggregate information. The present method for generating a pixel-oriented graph includes determining a visual boundary for representing an aggregate of a set of information depicted in the pixel-oriented graph and constructing a set of pixel blocks that represent the information such that the pixel blocks are visually distinguished by the visual boundary. A method according to the present techniques employs a visual weight to classify labels and high weight information is shown and other information is made invisible and hidden in the property of a graph.