摘要:
The present invention relates to a miniature transducer assembly for a wireless portable terminal. The miniature transducer assembly of the present invention comprises a transducer unit comprising a number of voice coils for displacing a diaphragm of said transducer unit. Moreover, the transducer assembly comprises at least one de-coupling coil for avoiding interference between the transducer unit and an antenna of the wireless portable terminal. In order to reduce the dimensions of the transducer assembly at least one de-coupling coil forms an integral part of a lead-out wire from of a voice coil.
摘要:
A radio device comprises an antenna for transmitting and receiving radio frequency signals. The antenna comprises a radiating antenna element (201, 602, 701) and a dielectric protective casing (202, 703) attached to each other, whereby the dielectric protective casing substantially encloses the antenna element. Further the radio device comprises a protective casing (205) of the radio device for mechanically supporting the radio device and for protecting its electrical components, and a printed circuit board (203) within the protective casing for connecting the electrical components to the radio device and for forming the electrical connections between the components. The antenna is mechanically fastened to the radio device with the aid of counterpart fastening shapes (301, 302, 303, 304, 305, 306, 307, 308) located in the antenna's protective casing and in the radio device's protective casing. The antenna is electrically connected to the radio device by a connection between a certain point (201b, 201b′) of the radiating antenna element and a certain point (204, 204′, 402) of the radio device.
摘要:
An antenna construction comprises a feed conductor (11, 21) and an antenna element (12, 22, 24, 25, 26, 27) which has a first end and a second end. The feed conductor is substantially electrically unshielded and coupled to the antenna element at a tapping point (13, 23) located between the first end and second end of the antenna element the tapping point dividing the antenna element into two portions having unequal electrical lengths. The antenna element may be a helix (12), a whip (22) or another known two-ended antenna element or a combination of those.
摘要:
A radiating antenna element intended for small-sized radio devices and a method for manufacturing the same. The element (300) is manufactured of a plate comprising a dielectric substrate coated with conductive material on one side. The radiating conductor branches corresponding to the operating bands of the antenna are formed on the plate by removing the conductive coating by laser narrowly from the border line of the area (330) between the designed conductor branches. The conductor area confined by the created border groove can be used as a parasitic additional radiator. If needed, the conductor area confined by the border groove (331) can also be split into a number of small conductor areas (CA1, CA2), in order to make sure that the conductor area does not radiate or have any substantial effect on the coupling between the radiating conductor branches. A relatively wide area “invisible” on the operating frequencies of the radiating branches of the antenna can be formed between the branches by the customary laser technique. This means lower manufacturing costs compared to the use of the etching process, and the creation of problem waste is also avoided.
摘要:
Internal planar antenna especially applicable to mobile communication devices. A PIFA-type planar antenna is fed coaxially-like. This means that the feed conductor (321) of a radiating plane (310) is surrounded by a shield conductor (322) galvanically connected to the ground plane (GND) for the length between these planes. The shield conductor at the same time serves as a short circuit conductor for the antenna. The antenna is matched by means of a matching slot (317) going between the connection points of the feed and short circuit conductors, and/or of the shape of the short circuit conductor. A feed arrangement at issue increases antenna gain without increasing the SAR value of the antenna.
摘要:
A radiating antenna element intended for small-sized radio devices and a method for manufacturing the same. The element (300) is manufactured of a plate comprising a dielectric substrate coated with conductive material on one side. The radiating conductor branches corresponding to the operating bands of the antenna are formed on the plate by removing the conductive coating by laser narrowly from the border line of the area (330) between the designed conductor branches. The conductor area confined by the created border groove can be used as a parasitic additional radiator. If needed, the conductor area confined by the border groove (331) can also be split into a number of small conductor areas (CA1, CA2), in order to make sure that the conductor area does not radiate or have any substantial effect on the coupling between the radiating conductor branches. A relatively wide area “invisible” on the operating frequencies of the radiating branches of the antenna can be formed between the branches by the customary laser technique. This means lower manufacturing costs compared to the use of the etching process, and the creation of problem waste is also avoided.
摘要:
An antenna component (200) with a dielectric substrate and two radiating antenna elements. The elements are located on the upper surface of the substrate and there is a narrow slot (260) between them. The antenna feed conductor (241) is connected to the first antenna element (220), which is connected also to the ground by a short-circuit conductor (261). The second antenna element (230) is parasitic; it is galvanically connected only to the ground. The component is preferably manufactured by a semiconductor technique by growing a metal layer e.g. on a quartz substrate and removing a part of it so that the antenna elements remain. In this case the component further comprises supporting material (212) of the substrate chip. The antenna component is very small-sized because of the high dielectricity of the substrate to be used and mostly because the slot between the antenna elements is narrow. The efficiency of an antenna made by the component is high.
摘要:
An antenna component (and antenna) with a dielectric substrate and a plurality of radiating antenna elements on the surface of the substrate. In one embodiment, the plurality comprises two (2) elements, each of them covering one of the opposite heads and part of the upper surface of the device. The upper surface between the elements comprises a slot. The lower edge of one of the antenna elements is galvanically coupled to the antenna feed conductor on a circuit board, and at another point to the ground plane, while the lower edge of the opposite antenna element, or the parasitic element, is galvanically coupled only to the ground plane. The parasitic element obtains its feed through the electromagnetic coupling over the slot, and both elements resonate at the operating frequency. Omni-directionality is also achieved. Losses associated with the substrate are low due to the simple field image in the substrate.
摘要:
An antenna (400; 600) for transmitting and receiving radio-frequency signals comprises a cylindrical coil conductor (601) having a turn A and a turn B and between them other turns. The pitch (x1) of turn A is unequal to the pitch (x2) of said turn B, and the pitches of the other turns between turns A and B are in the order of magnitude between the pitches of turns A and B.
摘要:
A radiofrequency antenna including a connector (3; 10) for mechanically and electrically connecting the antenna to the radio set and a fat monopole radiator (2; 11) forming a substantially integrated piece (1). The antenna may comprise a second antenna element (5), which is movable in relation to the integrated piece formed by the connector and the fat monopole radiator. The second antenna element is preferably a whip component, for which there is an axial aperture (7) defined in the connector and in the fat monopole radiator. The whip component may be locked in the upper position at different points (8, 8') in the aperture.