摘要:
A detonation chamber for a pulse detonation combustor including: a plurality of dimples disposed on at least a portion of an inner surface of the detonation chamber wherein the plurality of dimples enhance a turbulence of a fluid flow through the detonation chamber
摘要:
A method of forming at least one concavity of a selected size and shape within a surface of an internal passageway of a metallic component comprises: depositing a ceramic-based material by a direct-write technique onto a ceramic core which is suitable for forming the internal passageway during a casting process to form the metallic component, wherein the ceramic-based material is deposited as a positive feature; heat-treating the deposited ceramic-based material; forming the metallic component by a casting process in which the ceramic core is incorporated into the casting, in a position selected as a desired position for the internal passageway; and then removing the ceramic core from the metal component after the casting process is complete, thereby forming the internal passageway, with the concavity contained within the surface of the passageway, said concavity formed by removal of the positive feature of the ceramic-based material.
摘要:
A method and apparatus for cooling a combustor liner and transitions piece of a gas turbine include a combustor liner with a plurality of turbulators arranged in an array axially along a length defining a length of the combustor liner and located on an outer surface thereof; a first flow sleeve surrounding the combustor liner with a first flow annulus therebetween, the first flow sleeve having a plurality of rows of cooling holes formed about a circumference of the first flow sleeve for directing cooling air from the compressor discharge into the first flow annulus; a transition piece connected to the combustor liner and adapted to carry hot combustion gases to a stage of the turbine; a second flow sleeve surrounding the transition piece a second plurality of rows of cooling apertures for directing cooling air into a second flow annulus between the second flow sleeve and the transition piece; wherein the first plurality of cooling holes and second plurality of cooling apertures are each configured with an effective area to distribute less than 50% of compressor discharge air to the first flow sleeve and mix with cooling air from the second flow annulus.
摘要:
A component includes a wall with a cold and a hot surface. At least one film-cooling hole extends through the wall for flowing a coolant from the cold to the hot surface. The film-cooling hole defines an exit site in the hot surface. At least one flow modifier is formed on the hot surface and is adapted to direct the coolant flowing from the film-cooling hole and out of the exit site toward the hot surface. The flow modifier extends outwards from and conforms to the hot surface. A turbine assembly includes a first and a second component that define a secondary cooling slot, which receives and guides a secondary coolant flow. At least one flow modifier is formed on a surface of one of the two components and is adapted to enhance the secondary coolant flow along at least one of the two components within the secondary coolant slot.
摘要:
A component includes at least one wall having an inner portion and an outer portion. A number of pins extend between the inner and outer portions of the wall. The pins define a mesh cooling arrangement having a number of flow channels. A number of turbulators are disposed on at least one of the inner and outer portions of the wall.
摘要:
A method of forming at least one concavity of a selected size and shape within a surface of an internal passageway of a metallic component comprises: depositing a ceramic-based material by a direct-write technique onto a ceramic core which is suitable for forming the internal passageway during a casting process to form the metallic component, wherein the ceramic-based material is deposited as a positive feature; heat-treating the deposited ceramic-based material; forming the metallic component by a casting process in which the ceramic core is incorporated into the casting, in a position selected as a desired position for the internal passageway; and then removing the ceramic core from the metal component after the casting process is complete, thereby forming the internal passageway, with the concavity contained within the surface of the passageway, said concavity formed by removal of the positive feature of the ceramic-based material.
摘要:
A method of cooling a gas turbine engine component having a perforate metal wall includes providing a plurality of pores in the wall, wherein the pores extend substantially perpendicularly through the wall, and wherein the pores are covered and sealed closed at first ends thereof by a thermal barrier coating disposed over a first surface of the wall, and providing a plurality of film cooling holes in the wall, wherein the holes extend substantially perpendicularly through the wall and the thermal barrier coating. The method also includes providing cooling fluid to the plurality of pores and the plurality of film cooling holes along a second surface of the wall, channeling the cooling fluid through the pores for back side cooling an inner surface of the thermal barrier coating, and channeling the cooling fluid through the holes for film cooling an outer surface of the thermal barrier coating.
摘要:
A turbine airfoil includes opposite pressure and suction sides joined together at leading and trailing edges. An outwardly convex nose bridge bridges the pressure and suction sides behind the leading edge, and is integrally joined to a complementary thermally insulating shield spaced therefrom to define a bridge channel. The shield includes the leading edge and wraps laterally aft around the nose bridge along both the pressure and suction sides.
摘要:
A method of assembling a combustor assembly is provided, wherein the method includes providing a combustor liner having a centerline axis and defining a combustion chamber therein, and coupling an annular flowsleeve radially outward from the combustor liner such that an annular flow path is defined substantially circumferentially between the flowsleeve and the combustor liner. The method also includes orienting the flowsleeve such that a plurality of inlets formed within the flowsleeve are positioned to inject cooling air in a substantially axial direction into the annular flow path to facilitate cooling the combustor liner.