摘要:
An input of a first inverter is configured to serve as an input node. An output of the first inverter is coupled to an input of a second inverter. An output of the second inverter is configured to serve as an output node. An input of a third inverter is coupled to an input of the first inverter. A gate of a first NMOS transistor is coupled to an output of the third inverter. A drain of the first NMOS transistor is coupled to the second inverter. A source of the first NMOS transistor is configured to serve as a level input node. When the input node is configured to receive a low logic level, the output node is configured to receive a voltage level provided by a voltage level at the level input node.
摘要:
Some embodiments regard a memory array that has a plurality of eFuse memory cells arranged in rows and columns, a plurality of bit lines, and a plurality of word lines. A column includes a bit line selector, a bit line coupled to the bit line selector, and a plurality of eFuse memory cells. An eFuse memory cell of the column includes a PMOS transistor and an eFuse. A drain of the PMOS transistor is coupled to a first end of the eFuse. A gate of the PMOS transistor is coupled to a word line. A source of the PMOS transistor is coupled to the bit line of the column.
摘要:
Some embodiments regard a memory array that has a plurality of rows and columns. A column includes a program control device, a plurality of eFuse memory cells in the column, a sense amplifier, and a bit line coupling the program control device, the plurality of memory cells in the column, and the sense amplifier. A row includes a plurality of eFuse memory cells in the row, a word line coupling the plurality of eFuse memory cells in the row, and a footer configured as a current path for the plurality of eFuse memory cells in the row.
摘要:
During various processing operations, ions from process plasma may be transfer to a deep n-well (DNW) formed under devices structures. A reverse-biased diode may be connected to the signal line to protect a gate dielectric formed outside the DNW and is connected to the drain of the transistor formed inside the DNW.
摘要:
A method of reading an eFuse in a column of eFuse memory cells includes electrically disconnecting a first end of the eFuse from a first electrical path. A second electrical path between a second end of the eFuse and a node is activated to bypass a third electrical path, where the third electrical path includes a diode device between the second end of the eFuse and the node. A footer coupled with the node is turned on.
摘要:
The embodiments of methods and structures disclosed herein provide mechanisms of forming and programming a non-salicided polysilicon fuse. The non-salicided polysilicon fuse and a programming transistor form a one-time programmable (OTP) memory cell, which can be programmed with a low programming voltage.
摘要:
A method includes, by a first circuit, converting a plurality of bits in a first format to a second format. The plurality of bits in the second format is used, by a second circuit, to program a plurality of memory cells corresponding to the plurality of bits. The first format is a parallel format. The second format is a serial format. The first circuit and the second circuit are electrically coupled together in a chip. In some embodiments, the plurality of bits includes address information, cell data information, and program information of a memory cell that has an error. In some embodiments, the plurality of bits includes word data information of a word and error code and correction information corresponding to the word data information of the word.
摘要:
A mechanism of reconfiguring an eFuse memory array to have two or more neighboring eFuse bit cells placed side by and side and sharing a program bit line. By allowing two or more neighboring eFuse bit cells to share a program bit line, the length of the program bit line is shortened, which results in lower resistivity of the program bit line. The width of the program bit line may also be increased to further reduce the resistivity of program bit line. Program bit lines with low resistance and high current are needed for advanced eFuse memory arrays using low-resistivity eFuses.
摘要:
This description relates to a circuit including a bit line. The circuit further includes at least one memory bank. The at least one memory bank includes at least one memory cell, a first device configured to provide a current path between the bit line and the at least one memory cell when the at least one memory cell is activated, and a second device configured to reduce current leakage between the bit line and the at least one memory cell when the at least one memory cell is deactivated. The circuit further includes a tracking device configured to receive a mirror current substantially equal to a current along the current path, the tracking device configured to have a resistance substantially equal to a cumulative resistance of all memory cells of the at least one memory cell.
摘要:
An amplifying circuit comprises a bias circuit, a reference circuit, a first circuit, and an amplifying sub-circuit. The bias circuit is configured to provide a bias current. The reference circuit is configured to provide a first differential input based on a reference resistive device and a reference current derived from the bias current. The first circuit is configured to provide a second differential input based on a first current and a first resistance. The amplifying sub-circuit is configured to receive the first differential input and the second differential input and to generate a sense amplifying output indicative of a resistance relationship between the first resistance and a resistance of the reference resistive device.