Abstract:
A GMR sensor stripe provides a sensitive mechanism for detecting the presence of magnetized particles bonded to biological molecules that are affixed to a substrate. The adverse effect of hysteresis on the maintenance of a stable bias point for the magnetic moment of the sensor stripe free layer is eliminated by a combination of biasing the sensor stripe along its longitudinal direction rather than the usual transverse direction and by using the overcoat stress and magnetostriction of magnetic layers to create a compensatory transverse magnetic anisotropy. By connecting the stripes in an array and making the spaces between the stripes narrower than the dimension of the magnetized particle and by making the width of the stripes equal to the dimension of the particle, the sensitivity of the sensor array is enhanced.
Abstract:
A perpendicular magnetic recording (PMR) head is fabricated with a tapered main pole having a variable thickness. The tapered portion of the pole is at the ABS tip and it can be formed by bevels at the leading or trailing edges or both. The taper terminates to form a region with a maximum thickness, t1, which extends for a certain distance proximally. Beyond this region of maximum thickness t1, the pole is then reduced to a constant minimum thickness t2. A yoke is attached to this region of constant minimum thickness. This pole design requires less flux because of the thinner region of the pole where it attaches to the yoke, but the thicker region just before the tapered ABS provides additional flux to drive the pole just before the ABS, so that high definition and field gain is achieved, yet fringing is significantly reduced.
Abstract:
A slider mounted TAMR (Thermal Assisted Magnetic Recording), DFH (Dynamic Flying Height) type read/write head using optical-laser generated surface plasmons in a small antenna to locally heat a magnetic medium, uses the same optical laser at low power to pre-heat the antenna. Maintaining the antenna at this pre-heated temperature, approximately 50% of its highest temperature during write operations, allows the DFH mechanism sufficient time to compensate for the thermal protrusion of the antenna at that lower temperature, so that thermal protrusion transients are significantly reduced when a writing operation occurs and full laser power is applied. The time constant for antenna protrusion is less than the time constant for DFH fly height compensation, so, without pre-heating, the thermal protrusion of the antenna due to absorption of optical radiation cannot be compensated by the DFH effect.
Abstract:
An MRAM is disclosed that has a MTJ comprised of a ferromagnetic layer with a magnetization direction along a first axis, a super-paramagnetic (SP) free layer, and an insulating layer formed therebetween. The SP free layer has a remnant magnetization that is substantially zero in the absence of an external field, and in which magnetization is roughly proportional to an external field until reaching a saturation value. In one embodiment, a separate storage layer is formed above, below, or adjacent to the MTJ and has uniaxial anisotropy with a magnetization direction along its easy axis which parallels the first axis. In a second embodiment, the storage layer is formed on a non-magnetic conducting spacer layer within the MTJ and is patterned simultaneously with the MTJ. The SP free layer may be multiple layers or laminated layers of CoFeB. The storage layer may have a SyAP configuration and a laminated structure.
Abstract:
A process for manufacturing a random access memory cell, that is capable of storing multiple information states in a single physical bit, is described. The basic structure combines a conventional MTJ with a reference stack that is magnetostatically coupled to the MTJ. The MTJ is read in the usual way but data is written and stored in the reference stack. Through use of two bit lines, the direction of magnetization of the free layer can be changed in small increments each unique direction representing a different information state.
Abstract:
An MRAM reference cell sub-array provides a mid-point reference current to sense amplifiers. The MRAM reference cell sub-array has MRAM cells arranged in rows and columns. Bit lines are associated with each column of the sub-array. A coupling connects the bit lines of pairs of the columns together at a location proximally to the sense amplifiers. The MRAM cells of a first of the pair of columns are programmed to a first magneto-resistive state and the MRAM cells of a second of the pair of columns are programmed to a second magneto-resistive state. When one row of data MRAM cells is selected for reading, a row of paired MRAM reference cells are placed in parallel to generate the mid-point reference current for sensing. The MRAM reference sub-array may be programmed electrically or aided by a magnetic field. A method for verifying programming of the MRAM reference sub-array is discussed.
Abstract:
A memory element uses a conventional MTJ for reading purposes and a separate magnetic reference stack which is briefly heated while information is written into it. This information is then magnetostatically imposed on the MTJ's free layer which is located nearby. In this way the MTJ can be optimized for maximum dr/r while the reference stack can be optimized for optimum stability, since there is no half select problem. A process for manufacturing the memory element is also described.
Abstract:
An MRAM cell is formed in two separate portions. A first portion, that includes a pinned layer, a tunneling barrier layer and first free layer part, is used to read the value of a stored bit of information. A second portion includes a second free layer part on which information is written and stored. The second free layer part is formed with a high aspect ratio cross-section that renders it strongly magnetically anisotropic and enables it to couple to the relatively isotropic first free layer through a magnetostatic interaction. This interaction aligns the magnetization of the first free layer part in an opposite direction to the magnetization of the second free layer part. The magnetic orientation of the first free layer part relative to that of its adjacent pinned layer determines the resistance state of the first cell portion and this resistance state can be read by passing a current through the first cell portion. Thus, in effect, the first cell portion becomes a remote sensing device for the magnetization orientation of the second free layer part.
Abstract:
A spin-torque MRAM array has MRAM cells arranged in rows and columns. Bit lines are connected to each of the MRAM cells on each column. Source select lines are connected to each MRAM cell of a pair of rows and are oriented orthogonally to the bit lines. Write lines are connected to the gate of the gating MOS transistor of each MRAM cell of the rows. The MRAM cells are written in a two step process with selected MRAM cells written to a first logic level (0) in a first step and selected MRAM cells written to a second logic level (1) in a second step. A second embodiment of the spin-torque MRAM array has the bit lines commonly connected together to receive the data and the source select lines commonly connected together to receive an inverse of the data for writing.
Abstract:
Apparatus are presented for electrically coupling a slider to ground. In one embodiment, a bonding pad is provided on a side of the slider body separate from the bonding pad(s) used for read/write signals. This separate bonding pad is electrically coupled within the slider body to components that are to be coupled to ground. A separate conductor provided on the suspension (e.g., a trace, a flex circuit, etc.) may be electrically coupled to the separate bonding pad via gold ball bonding. The conductor is also coupled to ground in the hard-disk drive device (e.g., via the preamplifier). The use of the separated bonding pad and trace may negate the need to use a conductive adhesive to electrically ground the slider via its attachment to the tongue of a slider.