摘要:
A substrate is described that is suitable for surface enhanced optical detection. The substrate comprises an electrically conductive layer The substrate further comprises at least one nanoparticle comprising an electrically conductive portion. The electrically conductive portion may provide an opening to an underlying material. Such at least one nanoparticles may be a nanoring, a nanodisc, or a non-spherical nanoshell. The substrate further comprises a dielectric spacer for spacing the electrically conductive layer from the at least one nanoparticles. The dielectric spacer is a dielectric material substantially only present under the at least one nanoparticle, leaving the electrically conductive layer uncovered from dielectric material at positions away from the nanoparticles. The at least one nanoparticle and the dielectric spacer are interfaced along a first major surface and the at least one nanoparticle comprises an upstanding surface not in line with an upstanding surface of the dielectric spacer.
摘要:
A substrate is described that is suitable for surface enhanced optical detection. The substrate comprises an electrically conductive layer (110), such as for example a gold layer. It furthermore comprises at least one nanoparticle (1404) comprising an electrically conductive portion. The electrically conductive portion in some embodiments provides an opening to an underlying material. Such at least one nanoparticles (1404) thus may for example be a nanoring, a nanodisc, or a non-spherical nanoshell. The substrate furthermore comprises a dielectric spacer (1406) for spacing the electrically conductive layer from the at least one nanoparticles. The dielectric spacer (1406) is a dielectric material substantially only present under the at least one nanoparticle (1404), leaving the electrically conductive layer (110) uncovered from dielectric material at positions away from the nanoparticles (1404). The at least one nanoparticle (1404) and the dielectric spacer (1406) are interfaced along a first major surface (1402) and the at least one nanoparticle (1404) comprises an upstanding surface not in line with an upstanding surface of the dielectric spacer (1406).
摘要:
The present invention provides an apparatus for biogenic substance concentration measurement including: a cell including therein a first region, a second region, and a test solution retention space; a light source; a polarizing plate; and a photoreceiver, in which a plurality of first metallic nanorods each having a first antibody on a surface thereof are immobilized on the first region, a plurality of second metallic nanorods each having a second antibody on a surface thereof are immobilized on the second region, the respective long axes of the plurality of first metallic nanorods are aligned in the same direction, the respective long axes of the plurality of second metallic nanorods are aligned in the same direction, the long-axis direction of the first metallic nanorod is orthogonal to the long-axis direction of the second metallic nanorod, and at least one of the polarizing plate and the cell is capable of rotation with an optical axis as the rotation axis.
摘要:
One of the purposes of the present invention is to provide a biogenic substance concentration measuring method with improved measuring accuracy. An embodiment of the present invention provides a method for measuring a concentration of a biogenic substance contained in a living body, the method comprises steps of preparing a measuring device, wherein the measuring device comprises a light source, an optical filter, and a light receiver; irradiating a substantially-parallel light from the light source onto a particle chip implanted in a skin though a position on the surface of the skin to generate a reflected light; inclining the light source and calculating the concentration of the biogenic substance on the basis of the difference of signals before and after the inclination.
摘要:
The object of the present invention is to provide a method for measuring concentration of a biological substance contained in a living body in which deterioration of the accuracy due to the reflected light and the interruption component is suppressed. Linear-polarized light is emitted to a particle chip implanted in the skin with modulating its modulating direction continuously. A surface enhanced Raman scattering light of the biological substance generated on the particle chip. A concentration of the biological substance is calculated based on the received signal. The receiving signal satisfy the following equation (III). [Math. 3] R(t)=Am·sin(t)+D (III) R(t): received signal Am: amplitude t: time D: a constant number
摘要:
A device for measuring the concentration of a biological constituent based on infrared radiation emitted by a subject's eardrum with the influence of the eardrum's thickness taken into account is provided.The biological constituent concentration measuring device includes: a detecting section for detecting infrared radiation emitted by an eardrum; an acquisition section for acquiring thickness information about the thickness of the eardrum; and a computing section for figuring out the concentration of the biological constituent based on the infrared radiation detected and the thickness information acquired. The infrared radiation emitted by the eardrum is subject to the influence of the subject's eardrum thickness. Therefore, by calculating the biological constituent concentration based on not only the infrared radiation detected but also the eardrum thickness information, the biological constituent concentration can be measured highly accurately.
摘要:
A bioinformation measurement device that enables further accurate bioinformation measurement is provided. The device includes an insertion portion 104 to be inserted in an ear cavity 200; a first light inlet 105 and a second light inlet 106 provided at the insertion portion 104, for introducing the infrared light irradiated from the ear cavity 200 to the insertion portion 104; an optical guide path provided in the insertion portion 104 for guiding the first infrared light introduced from the first light inlet 105 and the second infrared light introduced from the second light inlet 106; a dispersive element for dispersing the first infrared light and the second infrared light guided by the optical guide path; an infrared ray detector 108 for detecting the first infrared light and the second infrared light dispersed by the dispersive element; and a computing unit for computing bioinformation based on the intensities of the first infrared light and the second infrared light detected by the infrared ray detector 108.
摘要:
A biological constituent concentration measuring device that can measure a biological constituent concentration highly accurately using a radiation that has come from an eardrum is provided.A measuring device for measuring concentration of a biological constituent includes: an image capturing section for capturing an image of an eardrum; a processing section for generating tilt information concerning tilt of the eardrum based on a first image capturing information obtained by capturing an image of a first area of the eardrum and a second image capturing information obtained by capturing an image of a second area of the eardrum, which is different from the first area; an infrared sensor for sensing infrared radiation that has been radiated from the eardrum; and a computing section for calculating the concentration of a biological constituent based on the infrared radiation sensed and the tilt information.
摘要:
A biogenic substance concentration measuring apparatus includes an optical measuring apparatus for measuring optical properties of a first substrate and a second substrate by using a cell for biogenic substance concentration measurement that includes: the first substrate on which a plurality of first metallic nanorods, each of which is modified with a substance that bonds specifically to a test substance, are immobilized such that the long axes thereof are aligned in the same direction; and the second substrate on which a plurality of second metallic nanorods, each of which is modified with a blocking substance, are immobilized such that the long axes thereof are aligned perpendicularly to the long axes of the first metallic nanorods on the first substrate, and calculates a biogenic substance concentration with high accuracy from the optical properties.
摘要:
In order to precisely determine a stable measuring region appropriate for a measurement of biological information, and to measure a concentration of a specific component, i.e. biological information, without inconsistency, a biological information measuring device is provided with, a measuring region determining means for determining a measuring region in between an eponychium and a distal interphalangeal joint; an information detector for applying a light to measuring region; a light source for entering a light to information detector; a light detector for detecting a light which exits from the information detector; and a processor for measuring specific component based on information obtained from light detector.