摘要:
A recordable element including a substrate and having over its surface, in order, an optical recording layer and a light reflecting layer, the improvement includes an optical recording layer containing Te.sub.a Ge.sub.b C.sub.c H.sub.d O.sub.e where a, b, c, d, and e are atomic percents such that a+b+c+d+e=100, and wherein 10
摘要:
A recordable element with improved performance, and a method of making such element is disclosed. The recordable element includes a substrate and an optical recording layer deposited on the substrate, wherein the optical recording layer is formed of Te.sub.a Ge.sub.b C.sub.c H.sub.d O.sub.e where a, b, c, d, and e are atomic percents such that a+b+c+d+e=100, and wherein 10
摘要:
There is disclosed an antimony, tin and indium alloy which contains an additional element. The additional element is selected from the group consisting of titanium, aluminum, magnesium, manganese, silver, bismuth, germanium, lead, tellurium, gold, zinc, copper, palladium, nickel, iron, cobalt, and cadmium. The additional element substantially reduces arcing during the sputtering process used to make optical recording layers from the alloy.
摘要:
A WORM optical recording element comprising a substrate and a phase-change recording layer wherein the phase-change recording layer has a composition expressed by SbaInbSncZndSieOfSh wherein a>0, b>0, c>0, d>0, e>0, f>0, h>0, and a+b+c+d+e+f+h=100
摘要翻译:一种WORM光学记录元件,包括基底和相变记录层,其中相变记录层具有由SbaInbSncZndSieOfSh表示的组成,其中a> 0,b> 0,c> 0,d> 0,e> 0,f > 0,h> 0,a + b + c + d + e + f + h = 100
摘要:
A recording medium includes a transparent substrate; a crystalline phase-change layer provided over the transparent substrate; a dielectric layer provided over the phase-change layer; a metallic reflector layer provided over the dielectric layer; and the crystalline phase-change layer having a thickness and phase-change material selected so that data can be recorded in it on a first write, but on second or subsequent writes the written data results in at least a 50% increase in data jitter.
摘要:
A WORM optical recording element comprising a substrate and a phase-change recording layer wherein the phase-change recording layer has a composition expressed by SbaXbSncZndSieOfSh wherein X is an element selected from In, Ge, Al, Zn, Mn, Cd, Ga, Ti, Si, Te, Nb, Fe, Co, W, Mo, S, Ni, O, Se, Tl, As, P, Au, Pd, Pt, Hf,or V and a>0, b>0, c>0, d>0, e>0, f>0, h>0, and a +b+c+d+e+f+h=100.
摘要翻译:一种WORM光学记录元件,包括基底和相变记录层,其中相变记录层具有由SbaXbSncZndSieOfSh表示的组成,其中X是选自In,Ge,Al,Zn,Mn,Cd,Ga,Ti ,Si,Te,Nb,Fe,Co,W,Mo,S,Ni,O,Se,Tl,As,P,Au,Pd,Pt,Hf或V和a> 0,b> 0,c> 0,d> 0,e> 0,f> 0,h> 0,a + b + c + d + e + f + h = 100。
摘要:
A WORM optical recording element includes a substrate; an amorphous phase-change recording layer disposed over the substrate; a dielectric layer disposed adjacent to the amorphous phase-change layer; a reflector layer disposed adjacent to the dielectric layer; and wherein the material and the thickness of the layers are selected such that recording can be performed on the optical recording element by using a focused laser beam to form crystalline marks in the phase-change layer using laser pulses with less than 40 nS in duration, the reflectivity of the amorphous phase as measured by a collimated beam is higher than 28% and the contrast of the read-back signal is higher than 0.6, and the second and subsequent writing over previous recording results in at least a 50% increase in read out jitter.
摘要:
A recordable element includes a substrate, an optical recording layer deposited on the substrate, a light reflecting layer deposited over the recording layer and an interfacial layer having a thickness in a range of 3 to 30 nm and interposed between the recording layer and the reflective layer, the optical recording layer containing Te.sub.a Ge.sub.b C.sub.c H.sub.d O.sub.e where a, b, c, d, and e are the atomic percents such that a+b+c+d+e=100, and wherein 10
摘要:
A method of forming a recordable element including a substrate and having on its surface, in order, an optical recording layer and a light reflecting layer, the optical recording layer having at least two sublayers of different compositions is disclosed. The method includes forming in a sputtering chamber on the substrate surface a first sublayer of a predetermined thickness by sputtering at least two metal elements having Ge and Te, or alloys thereof, in a flowing environment of a hydrocarbon gas and an inert gas wherein the flow rate of the hydrocarbon gas is selected relative to the flow rate of the inert gas to provide the first sublayer with an elemental R.sub.min reflectivity is in the range of 40-60% and forming in the sputtering chamber on the first sublayer a second sublayer of a predetermined thickness by sputtering at least two elements having Ge and Te, or alloys thereof, in a flowing environment of hydrocarbon gas and the inert gas, with the flow rates of the hydrocarbon gas and the inert gas being substantially the same as when the first sublayer was formed and reducing the sputtering rate of the metal elements in comparison to that used when forming the first sublayer so that the elemental R.sub.min reflectivity of the second sublayer is in the range of about 70-85%. The method further includes forming a reflecting layer on the second sublayer and selecting the thicknesses of the first and second sublayers, and the reflecting layer such that the reflectivity of the recording element is about or greater than 70% for a laser wavelength of about 780 nm.
摘要:
A method of forming a recordable element including a substrate and having on its surface, in order, an optical recording layer and a light reflecting layer, the optical recording layer having at least two sublayers of different compositions is disclosed. The method includes forming in a sputtering chamber on the substrate surface a first sublayer of a predetermined thickness by sputtering at least two elements having Ge and Te, or alloys thereof, in a flowing environment of a hydrocarbon gas and an inert gas wherein the flow rate of the hydrocarbon gas is selected relative to the flow rate of the inert gas to provide the first sublayer with an elemental R.sub.min reflectivity in the range of 40-60% and forming in the sputtering chamber on the first sublayer a second sublayer of a predetermined thickness by sputtering at least two elements having Ge and Te, or alloys thereof, in a flowing environment of hydrocarbon gas and the inert gas, with the flow rate of the hydrocarbon gas being selected to be greater than when forming the first sublayer so that the elemental R.sub.min reflectivity of the second layer is in the range of about 70-85%. The method further includes forming a reflecting layer on the second sublayer and selecting the thicknesses of the first and second sublayers, and the reflecting layer such that the reflectivity of the recording element is about or greater than 70% for a laser wavelength of about 780 nm.