摘要:
The embodiments fill the need enabling deposition of a thin and conformal barrier layer, and a copper layer in the copper interconnect with good electro-migration performance and with reduced risk of stress-induce voiding of copper interconnect. Electromigration and stress-induced voiding are affected by the adhesion between the barrier layer and the copper layer. A functionalization layer is deposited over the barrier layer to enable the copper layer being deposit in the copper interconnect. The functionalization layer forms strong bonds with barrier layer and with copper to improve adhesion property between the two layers. An exemplary method of preparing a substrate surface of a substrate to deposit a functionalization layer over a metallic barrier layer of a copper interconnect to assist deposition of a copper layer in the copper interconnect in order to improve electromigration performance of the copper interconnect is provided. The method includes depositing the metallic barrier layer to line the copper interconnect structure in the integrated system, and oxidizing a surface of the metallic barrier layer. The method also includes depositing the functionalization layer over the oxidized surface of the metallic barrier layer, and depositing the copper layer in the copper interconnect structure after the funcationalization layer is deposited over the metallic barrier layer.
摘要:
Methods for cleaning semiconductor wafers following chemical mechanical polishing are provided. An exemplary method exposes a wafer to a thermal treatment in an oxidizing environment followed by a thermal treatment in a reducing environment. The thermal treatment in the oxidizing environment both removes residues and oxidizes exposed copper surfaces to form a cupric oxide layer. The thermal treatment in the reducing environment then reduces the cupric oxide to elemental copper. This leaves the exposed copper clean and in condition for further processing, such as electroless plating.
摘要:
Methods for cleaning semiconductor wafers following chemical mechanical polishing are provided. An exemplary method exposes a wafer to a thermal treatment in an oxidizing environment followed by a thermal treatment in a reducing environment. The thermal treatment in the oxidizing environment both removes residues and oxidizes exposed copper surfaces to form a cupric oxide layer. The thermal treatment in the reducing environment then reduces the cupric oxide to elemental copper. This leaves the exposed copper clean and in condition for further processing, such as electroless plating.
摘要:
A self-limiting electroless plating process is provided to plate thin films with improved uniformity. The process comprises dispensing an electroless plating solution onto a substrate to form a quiescent solution layer from which a conformal plated layer plates onto a surface of the substrate by a redox reaction. The redox reaction occurs at the surface of the substrate between a reducing agent ion and a plating ion and produces an oxidized ion. Because the solution is quiescent, a boundary layer forms within the solution layer adjacent to the surface. The boundary layer is characterized by a concentration gradient of the oxidized ion. Diffusion of the reducing agent ion through the boundary layer controls the redox reaction. The quiescent solution layer can be maintained until the reducing agent ion in the solution layer is substantially depleted.
摘要:
Methods for cleaning semiconductor wafers following chemical mechanical polishing are provided. An exemplary method exposes a wafer to a thermal treatment in an oxidizing environment followed by a thermal treatment in a reducing environment. The thermal treatment in the oxidizing environment both removes residues and oxidizes exposed copper surfaces to form a cupric oxide layer. The thermal treatment in the reducing environment then reduces the cupric oxide to elemental copper. This leaves the exposed copper clean and in condition for further processing, such as electroless plating.
摘要:
Methods for cleaning semiconductor wafers following chemical mechanical polishing are provided. An exemplary method exposes a wafer to a thermal treatment in an oxidizing environment followed by a thermal treatment in a reducing environment. The thermal treatment in the oxidizing environment both removes residues and oxidizes exposed copper surfaces to form a cupric oxide layer. The thermal treatment in the reducing environment then reduces the cupric oxide to elemental copper. This leaves the exposed copper clean and in condition for further processing, such as electroless plating.