摘要:
An integrated system for processing a substrate in controlled environment to enable deposition of a thin copper seed layer on a surface of a metallic barrier layer of a copper interconnect is provided. The system includes a lab-ambient transfer chamber, a vacuum transfer chamber, a vacuum process module for cleaning an exposed surface of a metal oxide of a underlying metal, a vacuum process module for depositing the metallic barrier layer, and a controlled-ambient transfer chamber filled with an inert gas, wherein at least one controlled-ambient process module is coupled to the controlled-ambient transfer chamber. In addition, the system includes an electroless copper deposition process module used to deposit the thin layer of copper seed layer on the surface of the metallic barrier layer.
摘要:
An interconnect structure is provided, including a layer of dielectric material having at least one opening and a first barrier layer on sidewalls defining the opening. A ruthenium-containing second barrier layer overlays the first barrier layer, the second barrier layer having a ruthenium zone, a ruthenium oxide zone, and a ruthenium-rich zone. The ruthenium zone is interposed between the first barrier layer and the ruthenium oxide zone. The ruthenium oxide zone is interposed between the ruthenium zone and the ruthenium-rich zone.
摘要:
One embodiment of the present invention is a method of fabricating an integrated circuit. The method includes providing a substrate having a metal and dielectric damascene metallization layer and depositing substantially on the metal a cap. After deposition of the cap, the substrate is cleaned with a solution comprising an amine to provide a pH for the cleaning solution of 7 to about 13. Another embodiment of the presented invention is a method of cleaning substrates. Still another embodiment of the present invention is a formulation for a cleaning solution.
摘要:
A dry-in/dry-out system is disclosed for wafer electroless plating. The system includes an upper zone for wafer ingress/egress and drying operations. Proximity heads are provided in the upper zone to perform the drying operations. The system also includes a lower zone for electroless plating operations. The lower zone includes an electroless plating apparatus that implements a wafer submersion by fluid upwelling method. The upper and lower zones of the system are enclosed by a dual-walled chamber, wherein the inner wall is a chemically inert plastic and the outer wall is a structural metal. The system interfaces with a fluid handling system which provides the necessary chemistry supply and control for the system. The system is ambient controlled. Also, the system interfaces with an ambient controlled managed transfer module (MTM).
摘要:
The embodiments fill the need to enhance electro-migration performance, provide lower metal resistivity, and improve silicon-to-metal interfacial adhesion for copper interconnects by providing improved processes and systems that produce a silicon-to-metal interface. An exemplary method of preparing a substrate surface of a substrate to selectively deposit a layer of a metal on a silicon or polysilicon surface of the substrate to form a metal silicide in an integrated system is provided. The method includes removing organic contaminants from the substrate surface in the integrated system, and reducing the silicon or polysilicon surface in the integrated system after removing organic contaminants to convert silicon oxide on the silicon or polysilicon surface to silicon, wherein after reducing the silicon or polysilicon surface, the substrate is transferred and processed in controlled environment to prevent the formation of silicon oxide, the silicon or polysilicon surface is reduced to increase the selectivity of the metal on the silicon surface. The method further includes selectively depositing the layer of the metal on the silicon or polysilicon surface of substrate in the integrated system after reducing the silicon or polysilicon surface. An exemplary system to practice the exemplary method described above is also provided.
摘要:
One embodiment of the present invention is a method of fabricating an integrated circuit. The method includes providing a substrate having a metal and dielectric damascene metallization layer and depositing substantially on the metal a cap. After deposition of the cap, the substrate is cleaned with a solution comprising an amine to provide a pH for the cleaning solution of 7 to about 13. Another embodiment of the presented invention is a method of cleaning substrates. Still another embodiment of the present invention is a formulation for a cleaning solution.
摘要:
The embodiments fill the need to enhance electro-migration performance, provide lower metal resistivity, and improve metal-to-metal interfacial adhesion for copper interconnects by providing improved processes and systems that produce an improved metal-to-metal interface, more specifically barrier-to-copper interface. An exemplary method of preparing a substrate surface of a substrate to deposit a metallic barrier layer to line a copper interconnect structure of the substrate and to deposit a thin copper seed layer on a surface of the metallic barrier layer in an integrated system to improve electromigration performance of the copper interconnect is provided. The method includes cleaning an exposed surface of a underlying metal to remove surface metal oxide in the integrated system, wherein the underlying metal is part of a underlying interconnect electrically connected to the copper interconnect. The method also includes depositing the metallic barrier layer to line the copper interconnect structure in the integrated system, wherein after depositing the metallic barrier layer, the substrate is transferred and processed in controlled environment to prevent the formation of metallic barrier oxide. The method further includes depositing the thin copper seed layer in the integrated system, and depositing a gap-fill copper layer over the thin copper seed layer in the integrated system. An exemplary system to practice the exemplary method described above is also provided.
摘要:
A dry-in/dry-out system is disclosed for wafer electroless plating. The system includes an upper zone for wafer ingress/egress and drying operations. Proximity heads are provided in the upper zone to perform the drying operations. The system also includes a lower zone for electroless plating operations. The lower zone includes an electroless plating apparatus that implements a wafer submersion by fluid upwelling method. The upper and lower zones of the system are enclosed by a dual-walled chamber, wherein the inner wall is a chemically inert plastic and the outer wall is a structural metal. The system interfaces with a fluid handling system which provides the necessary chemistry supply and control for the system. The system is ambient controlled. Also, the system interfaces with an ambient controlled managed transfer module (MTM).
摘要:
An interconnect structure is provided, including a layer of dielectric material having at least one opening and a first barrier layer on sidewalls defining the opening. A ruthenium-containing second barrier layer overlays the first barrier layer, the second barrier layer having a ruthenium zone, a ruthenium oxide zone, and a ruthenium-rich zone. The ruthenium zone is interposed between the first barrier layer and the ruthenium oxide zone. The ruthenium oxide zone is interposed between the ruthenium zone and the ruthenium-rich zone.
摘要:
This invention pertains to methods and systems for fabricating semiconductor devices. One aspect of the present invention is a method of depositing a gapfill copper layer onto barrier layer for semiconductor device metallization. In one embodiment, the method includes forming the barrier layer on a surface of a substrate and subjecting the barrier layer to a process condition so as to form a removable passivated surface on the barrier layer. The method further includes removing the passivated surface from the barrier layer and depositing the gapfill copper layer onto the barrier layer. Another aspect of the present invention is an integrated system for depositing a copper layer onto a barrier layer for semiconductor device metallization. In one embodiment, the integrated system comprises at least one process module configured for barrier layer deposition and passivated surface formation and at least one other process module configured for passivated surface removal and deposition of copper onto the barrier layer. The system further includes at least one transfer module coupled so that the substrate can be transferred between the modules substantially without exposure to an oxide-forming environment.