摘要:
Methods for cleaning semiconductor wafers following chemical mechanical polishing are provided. An exemplary method exposes a wafer to a thermal treatment in an oxidizing environment followed by a thermal treatment in a reducing environment. The thermal treatment in the oxidizing environment both removes residues and oxidizes exposed copper surfaces to form a cupric oxide layer. The thermal treatment in the reducing environment then reduces the cupric oxide to elemental copper. This leaves the exposed copper clean and in condition for further processing, such as electroless plating.
摘要:
Methods for cleaning semiconductor wafers following chemical mechanical polishing are provided. An exemplary method exposes a wafer to a thermal treatment in an oxidizing environment followed by a thermal treatment in a reducing environment. The thermal treatment in the oxidizing environment both removes residues and oxidizes exposed copper surfaces to form a cupric oxide layer. The thermal treatment in the reducing environment then reduces the cupric oxide to elemental copper. This leaves the exposed copper clean and in condition for further processing, such as electroless plating.
摘要:
A self-limiting electroless plating process is provided to plate thin films with improved uniformity. The process comprises dispensing an electroless plating solution onto a substrate to form a quiescent solution layer from which a conformal plated layer plates onto a surface of the substrate by a redox reaction. The redox reaction occurs at the surface of the substrate between a reducing agent ion and a plating ion and produces an oxidized ion. Because the solution is quiescent, a boundary layer forms within the solution layer adjacent to the surface. The boundary layer is characterized by a concentration gradient of the oxidized ion. Diffusion of the reducing agent ion through the boundary layer controls the redox reaction. The quiescent solution layer can be maintained until the reducing agent ion in the solution layer is substantially depleted.
摘要:
Methods for cleaning semiconductor wafers following chemical mechanical polishing are provided. An exemplary method exposes a wafer to a thermal treatment in an oxidizing environment followed by a thermal treatment in a reducing environment. The thermal treatment in the oxidizing environment both removes residues and oxidizes exposed copper surfaces to form a cupric oxide layer. The thermal treatment in the reducing environment then reduces the cupric oxide to elemental copper. This leaves the exposed copper clean and in condition for further processing, such as electroless plating.
摘要:
The embodiments fill the need enabling deposition of a thin and conformal barrier layer, and a copper layer in the copper interconnect with good electro-migration performance and with reduced risk of stress-induce voiding of copper interconnect. Electromigration and stress-induced voiding are affected by the adhesion between the barrier layer and the copper layer. A functionalization layer is deposited over the barrier layer to enable the copper layer being deposit in the copper interconnect. The functionalization layer forms strong bonds with barrier layer and with copper to improve adhesion property between the two layers. An exemplary method of preparing a substrate surface of a substrate to deposit a functionalization layer over a metallic barrier layer of a copper interconnect to assist deposition of a copper layer in the copper interconnect in order to improve electromigration performance of the copper interconnect is provided. The method includes depositing the metallic barrier layer to line the copper interconnect structure in the integrated system, and oxidizing a surface of the metallic barrier layer. The method also includes depositing the functionalization layer over the oxidized surface of the metallic barrier layer, and depositing the copper layer in the copper interconnect structure after the funcationalization layer is deposited over the metallic barrier layer.
摘要:
An integrated system for processing a substrate in controlled environment to enable deposition of a thin copper seed layer on a surface of a metallic barrier layer of a copper interconnect is provided. The system includes a lab-ambient transfer chamber, a vacuum transfer chamber, a vacuum process module for cleaning an exposed surface of a metal oxide of a underlying metal, a vacuum process module for depositing the metallic barrier layer, and a controlled-ambient transfer chamber filled with an inert gas, wherein at least one controlled-ambient process module is coupled to the controlled-ambient transfer chamber. In addition, the system includes an electroless copper deposition process module used to deposit the thin layer of copper seed layer on the surface of the metallic barrier layer.
摘要:
The embodiments fill the need to enhance electro-migration performance, provide lower metal resistivity, and improve silicon-to-metal interfacial adhesion for copper interconnects by providing improved processes and systems that produce a silicon-to-metal interface. An exemplary method of preparing a substrate surface of a substrate to selectively deposit a layer of a metal on a silicon or polysilicon surface of the substrate to form a metal silicide in an integrated system is provided. The method includes removing organic contaminants from the substrate surface in the integrated system, and reducing the silicon or polysilicon surface in the integrated system after removing organic contaminants to convert silicon oxide on the silicon or polysilicon surface to silicon, wherein after reducing the silicon or polysilicon surface, the substrate is transferred and processed in controlled environment to prevent the formation of silicon oxide, the silicon or polysilicon surface is reduced to increase the selectivity of the metal on the silicon surface. The method further includes selectively depositing the layer of the metal on the silicon or polysilicon surface of substrate in the integrated system after reducing the silicon or polysilicon surface. An exemplary system to practice the exemplary method described above is also provided.
摘要:
The embodiments fill the need to enhance electro-migration performance, provide lower metal resistivity, and improve metal-to-metal interfacial adhesion for copper interconnects by providing improved processes and systems that produce an improved metal-to-metal interface, more specifically barrier-to-copper interface. An exemplary method of preparing a substrate surface of a substrate to deposit a metallic barrier layer to line a copper interconnect structure of the substrate and to deposit a thin copper seed layer on a surface of the metallic barrier layer in an integrated system to improve electromigration performance of the copper interconnect is provided. The method includes cleaning an exposed surface of a underlying metal to remove surface metal oxide in the integrated system, wherein the underlying metal is part of a underlying interconnect electrically connected to the copper interconnect. The method also includes depositing the metallic barrier layer to line the copper interconnect structure in the integrated system, wherein after depositing the metallic barrier layer, the substrate is transferred and processed in controlled environment to prevent the formation of metallic barrier oxide. The method further includes depositing the thin copper seed layer in the integrated system, and depositing a gap-fill copper layer over the thin copper seed layer in the integrated system. An exemplary system to practice the exemplary method described above is also provided.
摘要:
The embodiments fill the need to enhance electro-migration performance, provide lower metal resistivity, and improve metal-to-metal interfacial adhesion for copper interconnects by providing improved processes and systems that produce an improved metal-to-metal interface, more specifically copper-to-cobalt-alloy interface. An exemplary method of preparing a substrate surface of a substrate to selectively deposit a thin layer of a cobalt-alloy material on a copper surface of a copper interconnect of the substrate in an integrated system to improve electromigration performance of the copper interconnect is provided. The method includes removing contaminants and metal oxides from the substrate surface in the integrated system, and reconditioning the substrate surface using a reducing environment after removing contaminants and metal oxides in the integrated system. The method also includes selectively depositing the thin layer of cobalt-alloy material on the copper surface of the copper interconnect in the integrated system after reconditioning the substrate surface. An exemplary system to practice the exemplary method described above is also provided.
摘要:
The embodiments fill the need to enhance electro-migration performance, provide lower metal resistivity, and improve silicon-to-metal interfacial adhesion for copper interconnects by providing improved processes and systems that produce a silicon-to-metal interface. An exemplary method of preparing a substrate surface of a substrate to selectively deposit a layer of a metal on a silicon or polysilicon surface of the substrate to form a metal silicide in an integrated system is provided. The method includes removing organic contaminants from the substrate surface in the integrated system, and reducing the silicon or polysilicon surface in the integrated system after removing organic contaminants to convert silicon oxide on the silicon or polysilicon surface to silicon, wherein after reducing the silicon or polysilicon surface, the substrate is transferred and processed in controlled environment to prevent the formation of silicon oxide, the silicon or polysilicon surface is reduced to increase the selectivity of the metal on the silicon surface. The method further includes selectively depositing the layer of the metal on the silicon or polysilicon surface of substrate in the integrated system after reducing the silicon or polysilicon surface. An exemplary system to practice the exemplary method described above is also provided.