Abstract:
In one embodiment, a circuit includes a quantizer configured to convert an analog input signal to a digital signal. The quantizer includes a first feedback path including a first digital to analog converter (DAC) coupled from an output of the quantizer to a summing junction that is coupled to an input of the quantizer. The first feedback path converts the digital signal to a first corresponding analog value for combining with the analog input signal at the summing junction. Also, the quantizer includes a plurality of excess loop delay (ELD) compensation paths coupled to the summing junction configured to compensate for excess loop delay from a second feedback path coupled from the output of the quantizer to input of the quantizer via a loop filter. Second DACs in the second feedback path convert the digital signal to a second corresponding analog value for combining with the analog input signal.
Abstract:
In embodiments, a circuit includes a single-ended input coupled to a first input of a differential filter. The differential filter is coupled to an analog to digital converter (ADC), and the single-ended input includes an input DC bias voltage level and an input signal. A reference generator circuit is coupled to a second input of the differential filter. The reference generator circuit generates a reference bias voltage. The differential filter includes a first filter coupled to the singled ended input and to the ADC and a second filter coupled to the reference generator circuit and to the ADC. The first filter is configured to receive the input DC bias voltage level and input signal. The second filter is configured to receive the reference bias voltage.
Abstract:
A method and an apparatus for splitting a switched capacitor integrator of a delta-sigma modulator are provided. The apparatus configures a first integrator and a second integrator to be coupled in parallel to each other, switches between a first mode and a second mode, enables the first integrator to operate on an input signal to generate an output signal in the first mode, and enables the first integrator and the second integrator to cooperatively operate on the input signal in the second mode, wherein in the second mode, the apparatus generates a first output via the first integrator, generates a second output via the second integrator, and converges the first output with the second output to generate the output signal.
Abstract:
In one embodiment, a circuit includes a quantizer configured to convert an analog input signal to a digital signal. The quantizer includes a first feedback path including a first digital to analog converter (DAC) coupled from an output of the quantizer to a summing junction that is coupled to an input of the quantizer. The first feedback path converts the digital signal to a first corresponding analog value for combining with the analog input signal at the summing junction. Also, the quantizer includes a plurality of excess loop delay (ELD) compensation paths coupled to the summing junction configured to compensate for excess loop delay from a second feedback path coupled from the output of the quantizer to input of the quantizer via a loop filter. Second DACs in the second feedback path convert the digital signal to a second corresponding analog value for combining with the analog input signal.