Abstract:
Methods and apparatus relating to spin-orbit-torque magnetoresistive random access memory with voltage-controlled anisotropy are disclosed. In an example, disclosed is a three-terminal magnetic tunnel junction (MTJ) storage element that is programmed via a combination of voltage-controlled magnetic anisotropy (VCMA) and spin-orbit torque (SOT) techniques. Also disclosed is a memory controller configured to program the three-terminal MTJ storage element via VCMA and SOT techniques. The disclosed devices improve efficiency over conventional devices by using less write energy, while having a design that is simpler and more scalable than conventional devices. The disclosed devices also have increased thermal stability without increasing required switching current, as critical switching current between states is essentially the same
Abstract:
A material stack of a synthetic anti-ferromagnetic (SAF) reference layer of a perpendicular magnetic tunnel junction (MTJ) may include an SAF coupling layer. The material stack may also include and an amorphous spacer layer on the SAF coupling layer. The amorphous spacer layer may include an alloy or multilayer of tantalum and cobalt or tantalum and iron or cobalt and iron and tantalum. The amorphous spacer layer may also include a treated surface of the SAF coupling layer.
Abstract:
A magnetic tunnel junction (MTJ) device includes a free layer. The MTJ also includes a barrier layer coupled to the free layer. The MTJ also has a fixed layer, coupled to the barrier layer. The fixed layer includes a first synthetic antiferromagnetic (SAF) multilayer having a first perpendicular magnetic anisotropy (PMA) and a first damping constant. The fixed layer also includes a second SAF multilayer having a second perpendicular magnetic anisotropy (PMA) and a second damping constant lower than the first damping constant. The first SAF multilayer is closer to the barrier layer than the second SAF multilayer. The fixed layer also includes a SAF coupling layer between the first and the second SAF multilayers.
Abstract:
A magnetic tunnel junction (MTJ) device in a magnetoresistive random access memory (MRAM) and method of making the same are provided to achieve a high tunneling magnetoresistance (TMR), a high perpendicular magnetic anisotropy (PMA), good data retention, and a high level of thermal stability. The MTJ device includes a first free ferromagnetic layer, a synthetic antiferromagnetic (SAF) coupling layer, and a second free ferromagnetic layer, where the first and second free ferromagnetic layers have opposite magnetic moments.
Abstract:
Methods and apparatus relating to spin-orbit-torque magnetoresistive random access memory with voltage-controlled anisotropy are disclosed. In an example, disclosed is a three-terminal magnetic tunnel junction (MTJ) storage element that is programmed via a combination of voltage-controlled magnetic anisotropy (VCMA) and spin-orbit torque (SOT) techniques. Also disclosed is a memory controller configured to program the three-terminal MTJ storage element via VCMA and SOT techniques. The disclosed devices improve efficiency over conventional devices by using less write energy, while having a design that is simpler and more scalable than conventional devices. The disclosed devices also have increased thermal stability without increasing required switching current, as critical switching current between states is essentially the same.
Abstract:
A material stack of a synthetic anti-ferromagnetic (SAF) reference layer of a perpendicular magnetic tunnel junction (MTJ) may include an SAF coupling layer. The material stack may also include and an amorphous spacer layer on the SAF coupling layer. The amorphous spacer layer may include an alloy or multilayer of tantalum and cobalt or tantalum and iron or cobalt and iron and tantalum. The amorphous spacer layer may also include a treated surface of the SAF coupling layer.
Abstract:
A method for fabricating a perpendicular magnetic tunnel junction (pMTJ) device includes growing a seed layer on a first electrode of the pMTJ device. The seed layer has a uniform predetermined crystal orientation along a growth axis. The method also includes planarizing the seed layer while maintaining the uniform predetermined crystal orientation of the seed layer.
Abstract:
Perpendicular magnetic anisotropy (PMA) type magnetic random access memory cells are constructed with a composite PMA layer to provide a magnetic tunnel junction (MTJ) with an acceptable thermal barrier. A PMA coupling layer is deposited between a first PMA layer and a second PMA layer to form the composite PMA layer. The composite PMA layer may be incorporated in PMA type MRAM cells or in-plane type MRAM cells.
Abstract:
A magnetic tunnel junction (MTJ) device includes a pinned layer, a tunnel barrier layer on the pinned layer, and a free layer on the tunnel barrier layer. The MTJ device also includes a perpendicular magnetic anisotropic (PMA) enhancement layer on the free layer, a capping layer on the PMA enhancement layer, and a conductive path electrically shorting the capping layer, the PMA enhancement layer and the free layer. A method of fabricating a perpendicular magnetic tunnel junction (pMTJ) device includes forming a capping layer, a perpendicular magnetic anisotropic (PMA) enhancement layer and a free layer. The method also includes forming a conductive layer to short the capping layer, the PMA enhancement layer and the free layer.
Abstract:
A method for integrating a magnetic tunnel junction (MTJ) device into an integrated circuit includes providing in a semiconductor back-end-of-line (BEOL) process flow a substrate having a first interlevel dielectric layer and at least a first conductive interconnect. Over the first interlevel dielectric layer and the first conductive interconnect, magnetic tunnel junction material layers are deposited. From the material layers a magnetic tunnel junction stack, coupled to the first conductive interconnect, is defined using a single mask process. The magnetic tunnel junction stack is integrated into the integrated circuit.