Abstract:
Methods and apparatuses are disclosed for synchronizing data inputs generated at a plurality of frequencies by a plurality of data sources. A device receives a first set of data points from a first data source of the plurality of data sources generated at a first frequency of the plurality of frequencies, receives a second set of data points from a second data source of the plurality of data sources generated at a second frequency of the plurality of frequencies, selects a time window corresponding to a period of time during which at least a subset of the first set of data points and at least a subset of the second set of data points were generated, and generates a vector representing a first reduced form of the subset of the first set of data points and a second reduced form of the subset of the second set of data points.
Abstract:
Systems and methods are disclosed for determining a context-dependent virtual distance based on stigmergic interference. The method may include obtaining environmental status information relating to an environment in proximity to a client device, calculating, based on the obtained environmental status information, the context-dependent virtual distance between the client device and a user of the client device, and controlling a user signaling pattern of the client device based on the calculated context-dependent virtual distance.
Abstract:
Method and apparatuses for constructing a grammar to describe interactions among a plurality of devices in a network are disclosed. An aspect receives, by a network interface of a device, device capabilities of each of the plurality of devices, generates, by a reduced device list generator of the device, a reduced device list representing groupings of the plurality of devices based on the device capabilities, models, by an interaction sequence modeler of the device, one or more sequences of interactions among the plurality of devices using the reduced device list, constructs, by a grammar construction module of the device, the grammar based on the modeled one or more sequences of interactions, and stores the grammar in a memory of the device.
Abstract:
In an aspect, a client device detects a set of proximate client devices. The client device classifies, for each respective proximate client device in the set of proximate client devices, a relationship relative to an operator of the client device based on a local evaluation of one or more interactions between the client device and at least one proximate client device from the set of proximate client devices in response to the detecting. The client device determines whether to automatically trigger a communicative action with one or more proximate client devices from the set of proximate client devices based on the classifying.
Abstract:
The disclosure generally relates to enabling communication among one or more Internet of Things (IoT) device groups. In particular, various heterogeneous IoT devices that may need to interact with one another in different ways may be organized into IoT device groups to support efficient interaction among the IoT devices. For example, pre-defined IoT device groups may be formed organize certain IoT devices that perform similar activities and certain IoT devices may be dynamically allocated to ad-hoc IoT device groups for certain contexts (e.g., the ad-hoc IoT device groups may include IoT devices that can implement a desired function and therefore be dynamically formed to implement the desired function). Furthermore, the IoT groups may communicate hierarchically, wherein messages may be exchanged among IoT group owners or ranking members to support efficient communication between different IoT groups.
Abstract:
An aspect of the disclosure is directed to transmitting a reduced stream of encoded video frames. An original stream of encoded video frames is analyzed, a plurality of frames are removed without re-encoding encoded video frames to generate the reduced stream of encoded video frames, and the reduced stream and metadata describing the plurality of removed frames are transmitted. An aspect of the disclosure is directed to creating a new version of an original stream of encoded video frames from a reduced stream of encoded video frames. The reduced stream of encoded video frames is received, the plurality of removed frames is identified based on metadata related to the reduced stream, a plurality of replacement frames are generated, and the plurality of replacement frames are added to the reduced stream of encoded video frames to recreate the new version of the original stream of encoded video frames.
Abstract:
The disclosure relates to creating a time-sensitive grammar. A device receives a plurality of data points, identifies a plurality of time gaps associated with the plurality of data points, each of the plurality of time gaps representing a dwell time or a frequency of occurrence of a data point of the plurality of data points, generates a generic time factor representing a multiple of the plurality of time gaps, and combines the generic time factor with the plurality of data points to create a time-sensitive sequence of data points. The generic time factor may be inserted into the time-sensitive sequence a number of times representing the dwell time or the frequency of occurrence of a corresponding data point of the plurality of data points.
Abstract:
The disclosure is directed to clustering a stream of data points. An aspect receives the stream of data points, determines a plurality of cluster centroids, divides the plurality of cluster centroids among a plurality of threads and/or processors, assigns a portion of the stream of data points to each of the plurality of threads and/or processors, and combines a plurality of clusters generated by the plurality of threads and/or processors to generate a global universe of clusters. An aspect assigns a portion of the stream of data points to each of a plurality of threads and/or processors, wherein each of the plurality of threads and/or processors determines one or more cluster centroids and generates one or more clusters around the one or more cluster centroids, and combines the one or more clusters from each of the plurality of threads and/or processors to generate a global universe of clusters.
Abstract:
In an embodiment, a device controller initiates a dynamic discovery procedure to detect media output devices that are currently in proximity to a user. The device controller determines a first subset of the detected media output devices configured to present a first media type (e.g., video, audio, etc.) to the user and a second subset of the detected media output devices configured to present a second media type (e.g., audio, video, etc.) to the user. The device controller directs first and second portions of media to the first and second subsets conjunctive presentation. In another embodiment, the first and/or second subsets can include two or more devices, such that the same media type can be presented by multiple devices (e.g., to achieve a surround sound effect, a split-screen or cloned video effect, etc.).
Abstract:
An aspect enables context aware actions among heterogeneous Internet of Things (IoT) devices. An IoT device receives data representing a context of each of a first set of IoT devices, receives data representing a current state of each of a second set of IoT devices, and determines an action to perform at a target IoT based on the received data. An aspect verifies an implied relationship between a first user and a second user by detecting an interaction between a first user device belonging to the first user and a second user device belonging to the second user, storing information related to the interaction in a first interaction table associated with the first user device, assigning a relationship identifier to the second user based, at least in part, on the information related to the interaction, and determining whether or not the assigned relationship identifier is correct.