Abstract:
Image frames for computational photography may be corrected, such as through rolling shutter correction (RSC), prior to fusion of the image frames to reduce wobble and jitter artifacts present in a video sequence of HDR-enhanced image frames. First and second motion data regarding motion of the image capture device may be determined for times corresponding to the capturing of the first and second image frames, respectively. The rolling shutter correction (RSC) may be applied to the first and second image frames based on both the first and second motion data. The corrected first and second image frames may then be aligned and fused to obtain a single output image frame with higher dynamic range than either of the first or second image frames.
Abstract:
Systems and methods for synchronizing frame captures for cameras with different fields of capture are described. An example device includes a first camera and second camera. The first camera includes a first camera sensor and a first rolling shutter. The first camera is configured to prevent scanning pixels from a first row to a row n of the first camera sensor and configured to begin sequentially scanning pixels of the row n of the first camera sensor. The second camera includes a second camera sensor and a second rolling shutter. The second camera is configured to begin sequentially scanning pixels of a first row of the second camera sensor concurrently with beginning to sequentially scan pixels of the row n of the first camera sensor. The first row of the second camera sensor corresponds to a row within a predefined number of rows after the first camera sensor's row n.
Abstract:
Certain aspects relate to systems and techniques for full well capacity extension. For example, a storage capacitor included in the pixel readout architecture can enable multiple charge dumps from a pixel in the analog domain, extending the full well capacity of the pixel. Further, multiple reads can be integrated in the digital domain using a memory, for example DRAM, in communication with the pixel readout architecture. This also can effectively multiply a small pixel's full well capacity. In some examples, multiple reads in the digital domain can be used to reduce, eliminate, or compensate for kTC noise in the pixel readout architecture.
Abstract:
Certain aspects relate to systems and techniques for full well capacity extension. For example, a storage capacitor included in the pixel readout architecture can enable multiple charge dumps from a pixel in the analog domain, extending the full well capacity of the pixel. Further, multiple reads can be integrated in the digital domain using a memory, for example DRAM, in communication with the pixel readout architecture. This also can effectively multiply a small pixel's full well capacity. In some examples, multiple reads in the digital domain can be used to reduce, eliminate, or compensate for kTC noise in the pixel readout architecture.
Abstract:
Methods, devices, and computer program products for image sensors with overlapped exposure brackets supporting multiple short exposures are described. In one aspect, a method of capturing an image is disclosed. The method includes capturing, on a first subset of pixels on an image sensor, a first image with a first exposure length. The method further includes simultaneously capturing, on a second subset of pixels on an image sensor, a plurality of images with a second exposure length, wherein the second exposure length is shorter than the first exposure length. The method further includes combining the plurality of images with a second exposure length into a second image. Finally, the method includes combining the first image and the second image.
Abstract:
Systems and methods for image fusing are described. In examples, a first image of a scene may be obtained associated with a first parameter and a second image of the scene may be obtained associated with a second parameter. The first image and the second image may be fused to obtain at least one first fused image. A third image of the scene may be obtained associated with a third parameter and a fourth image of the scene may be obtained associated with a fourth image. At least one parameter associated with the third image and the fourth image used to obtain the images may be adjusted, wherein the adjustment may be based at least in part on a field of view of the at least one first fused image. The third image and the fourth image may be fused to obtain a second fused image.
Abstract:
This disclosure provides systems, methods, and devices for image signal processing that support improved detail keeping in photography through increased dynamic range and/or highlight-keeping. The image signal processing may be performed on data received from a split-pixel image sensor with two sets of sensor elements with different sensitivities. The image signal processing may include receiving image data comprising: first data from a first set of sensor elements and second data from a second set of sensor elements capturing a representation of the scene with a different sensitivity that the first set of sensor elements; determining an output dynamic range for an output image frame; and determining an output image frame based on at least one of the first data and the second data and based on the output dynamic range. Other aspects and features are also claimed and described.
Abstract:
Systems and techniques are provided for processing images. For example, a process can include obtaining a first color image including first one or more pixels from a first image sensor and obtaining a second color image including second one or more pixels from a second sensor, the second color image including infrared (IR) information from a second image sensor. The process can include determining a transformation between colors associated with the first one or more pixels and colors associated with the second one or more pixels based on a comparison associated with the first one or more pixels and the second one or more pixels. The process can include generating a color corrected image at least in part by transforming the second color image including IR information to a color corrected image based on the determined transformation.
Abstract:
This disclosure provides systems, methods, and devices for image signal processing that support improved detail keeping in photography through increased dynamic range and/or highlight-keeping. The image signal processing may be performed on data received from a split-pixel image sensor with two sets of sensor elements with different sensitivities. The image signal processing may include receiving image data comprising: first data from a first set of sensor elements and second data from a second set of sensor elements capturing a representation of the scene with a different sensitivity that the first set of sensor elements; determining an output dynamic range for an output image frame; and determining an output image frame based on at least one of the first data and the second data and based on the output dynamic range. Other aspects and features are also claimed and described.
Abstract:
Techniques and systems are provided for providing a rendering engine model for raw media data. In some examples, a system obtains media data captured by a data capturing device and embeds, in a media item containing the media data, a rendering engine model including a description of a neural network configured to process the media data and generate a particular media data output, the description defining a neural network architecture for the neural network. The system then outputs the media item with the rendering engine model embedded in the media item, the rendering engine model indicating how to execute the neural network to process the media data in the media item and generate the particular media data output based on the description of the neural network.