Abstract:
A network device may be configured for communication over multiple communication networks. In one example, a method for using a network device to communicate over multiple networks is disclosed. The method includes receiving a packet from a combined communication interface and determining that the packet is formatted according to a first communication protocol. In response to determining that the packet is formatted according to the first communication protocol, the method includes enabling a first component in a first digital signal processor (DSP) block of the network device to process the packet according to the first communication protocol, and disabling a second component of the first DSP block, wherein the second component is configured to process the packet according to a second communication protocol.
Abstract:
A powerline communication (PLC) network analyzer can join a PLC network by authenticating and associating with a central coordinator of the PLC network. The network analyzer can receive an encryption key from the central coordinator and dissociate from the PLC network. The network analyzer can capture and decrypt network traffic from the PLC network while remaining dissociated. The network analyzer can also create one or more virtual stations for the PLC network. The virtual stations can join the PLC network through the central coordinator and generate network traffic for the PLC network.
Abstract:
This disclosure provides several mechanisms for adapting transmit power spectral density (PSD). A communications device may adapt the power spectrum utilized at the transmitter based, at least in part, on the channel conditions or PSD constraints associated with the communications medium between the transmitter and a receiver device. Additionally, the transmit PSD may be adapted based, at least in part, on a total power capability associated with a transmitter. Power is allocated to improve throughput and utilization of the communications channel. A transmission profile may be selected based, at least in part, on the notch depth. The transmission profile may be associated with symbol timing parameters. The communications device may maintain a plurality of selectable pulse shapes that are optimized for different notch depths.
Abstract:
A network device may be configured for communication over multiple communication networks. In one example, a method for scheduling a network device for communication in communication networks is disclosed. The method includes determining, based at least in part on a first schedule, a first collision interval indicating when the network device is available for communication over the communication networks that include a first communication network and a second communication network. The method includes determining communication behavior of the network device for communicating over the first communication network and the second communication network during the first collision interval.
Abstract:
Described herein are apparatuses for receiving preamble information via a channel between a first device and a second device. An apparatus is configured to scan a band of multiple carriers associated with the channel, determine a first carrier associated with the channel from the band of multiple carriers, wherein a first channel quality metric associated with the first carrier is greater than a threshold channel quality metric, receive, on the first carrier, the preamble information from the first device, determine a second carrier associated with the channel from the band of multiple carriers, wherein a second channel quality metric associated with the second carrier is greater than the threshold channel quality metric, receive, on the second carrier, the preamble information from the first device, and determine, based on receipt of the preamble information from the first device, a start of a data packet transmission from the first device.
Abstract:
Powerline communication (PLC) networks allow devices within a home, automobile, or other systems to communicate over existing wired powerline infrastructure. Active PLC networks can affect devices sharing the powerline infrastructure as well as wireless devices through radiated noise emissions. Provided in the present disclosure are exemplary techniques for reducing noise emissions and promoting coexistence of multiple PLC systems and/or non-PLC (e.g., wireless) systems.
Abstract:
A radio detector may detect the presence of safeguarded radio frequency signals and one or more devices associated with a first network regarding the presence of the safeguarded radio frequency signals. The radio detector may be implemented as part of a device coupled to the first network, an accessory, a stand-alone detector, or as part of an infrastructure component. The radio detector may transmit a message regarding the detection of safeguarded radio frequency signals using any variety of messages, including a tone map, amplitude map, beacon message, host communication, tone mask, or the like.
Abstract:
A network device may be configured for communication over multiple communication networks. In one example, a method for using a network device to communicate over multiple networks is disclosed. The method includes receiving a packet from a combined communication interface and determining that the packet is formatted according to a first communication protocol. In response to determining that the packet is formatted according to the first communication protocol, the method includes enabling a first component in a first digital signal processor (DSP) block of the network device to process the packet according to the first communication protocol, and disabling a second component of the first DSP block, wherein the second component is configured to process the packet according to a second communication protocol.
Abstract:
A network device may include a plug that couples with a socket to couple the network device to a PLC network. A position of the plug may be interchanged when the plug is coupled with the socket. In one example, the network device may determine a coupling orientation of the plug that indicates the position of the plug with respect to the socket. The plug includes a first plug terminal, a second plug terminal, a first ground plug terminal, and a second ground plug terminal. The network device may select a signal polarity for the plug based, at least in part, on the coupling orientation. The signal polarity indicates over which of the plug terminals data is to be transmitted for communication over the PLC network.
Abstract:
A dual channel transmitter and a dual channel receiver are disclosed. The dual channel transmitter may determine to transmit an information signal to a network device and the dual channel receiver may determine to receive an information signal at the network device on either or both a wireless channel and a wireline channel. A guard interval controller may select a guard interval based at least in part on a determination of whether the information signal is to be transmitted or received on either or both the wireless channel and the wireline channel.