Abstract:
Methods and devices of various embodiments provide enhanced location services by leveraging a system of beacon devices each broadcasting data that is useful in calculating locations and report of the trustworthiness of neighbor beacon devices. Various embodiments include a method performed by a beacon device that may include obtaining location data using a first functionality, evaluating sensor data to identify a breach of trust condition at the beacon device, generating authentication data that indicates any identified breach of trust condition, receiving one or more neighbor beacon broadcast messages using a second functionality, determining whether the one or more neighbor beacon broadcast messages include trustworthy location data, and broadcasting an outgoing broadcast message that includes the obtained location data, timing data, the generated authentication data, and data indicating whether the one or more neighbor beacon broadcast messages include trustworthy location data.
Abstract:
Methods and devices of various embodiments provide enhanced location services by leveraging a system of beacon devices each broadcasting data that is useful in calculating locations and report of the trustworthiness of neighbor beacon devices. Various embodiments include a method performed by a beacon device that may include obtaining location data using a first functionality, evaluating sensor data to identify a breach of trust condition at the beacon device, generating authentication data that indicates any identified breach of trust condition, receiving one or more neighbor beacon broadcast messages using a second functionality, determining whether the one or more neighbor beacon broadcast messages include trustworthy location data, and broadcasting an outgoing broadcast message that includes the obtained location data, timing data, the generated authentication data, and data indicating whether the one or more neighbor beacon broadcast messages include trustworthy location data.
Abstract:
A method of dynamically modifying target selection with a neural network includes dynamically modifying a selection function by controlling an amount of imbalance of connections in the neural network. A selected neuron represents one of multiple candidate targets.
Abstract:
Various embodiments provide methods for controlling landings of a UAV in a landing zone including a plurality of landing bays. Various embodiments include a method implemented on a computing device for receiving continuous real-time sensor data from a transceiver and from sensors onboard the UAV, and detecting a target landing bay within the plurality of landing bays within the landing zone that is available for landing based on the continuous real-time sensor data. Orientation and position coordinates for landing in the target landing bay may be calculated based on the continuous real-time sensor data. Information regarding positions and flight vectors of a plurality of autonomous UAVs may be obtained, and a flight plan for landing in the target landing bay may be generated based on the orientation and the position coordinates, positions and flight vectors of the plurality of autonomous UAVs and a current orientation and position of the UAV.
Abstract:
Various embodiments provide methods for controlling landings of a UAV in a landing zone including a plurality of landing bays. Various embodiments include a method implemented on a computing device for receiving continuous real-time sensor data from a transceiver and from sensors onboard the UAV, and detecting a target landing bay within the plurality of landing bays within the landing zone that is available for landing based on the continuous real-time sensor data. Orientation and position coordinates for landing in the target landing bay may be calculated based on the continuous real-time sensor data. Information regarding positions and flight vectors of a plurality of autonomous UAVs may be obtained, and a flight plan for landing in the target landing bay may be generated based on the orientation and the position coordinates, positions and flight vectors of the plurality of autonomous UAVs and a current orientation and position of the UAV.
Abstract:
Methods and apparatus are provided for training a neural device having an artificial nervous system by modulating at least one training parameter during the training. One example method for training a neural device having an artificial nervous system generally includes observing the neural device in a training environment and modulating at least one training parameter based at least in part on the observing. For example, the training apparatus described herein may modify the neural device's internal learning mechanisms (e.g., spike rate, learning rate, neuromodulators, sensor sensitivity, etc.) and/or the training environment's stimuli (e.g., move a flame closer to the device, make the scene darker, etc.). In this manner, the speed with which the neural device is trained (i.e., the training rate) may be significantly increased compared to conventional neural device training systems.
Abstract:
Methods and apparatus are provided for effecting modulation using global scalar values in a spiking neural network. One example method for operating an artificial nervous system generally includes determining one or more updated values for artificial neuromodulators to be used by a plurality of entities in a neuron model and providing the updated values to the plurality of entities.
Abstract:
Techniques are disclosed for providing a user interface on a flexible display integrated on and/or into clothing. All or a portion of an article of clothing can function as a flexible display, enabling a user interface to be provided to a wearer of the article of clothing in a customized manner. The customized manner can be based on the type of information provided in the user interface and/or a triggering event invoking the user interface.