Abstract:
The present disclosure relates to an FCC catalyst additive for cracking of petroleum feedstock and a process for its preparation. The FCC catalyst additive of the present disclosure comprises at least one zeolite, at least one clay, at least one binder, phosphorous in the form of P2O5, and at least one Group IVB metal compound. The FCC catalyst additive of the present disclosure is hydrothermally stable and has improved matrix surface area even after various hydrothermal treatments. The FCC catalyst additive of the present disclosure can be used in combination with the conventional FCC catalyst for catalytic cracking to selectively enhance the propylene and LPG yields.
Abstract:
The present invention relates to a catalyst for Fluid Catalytic Cracking (FCC) which contains a combination of a FCC catalyst component and an additive component with certain physical properties attributed therein. The present invention is also directed to provide methods for the preparation of the catalyst for FCC. The admixture of the FCC catalyst component and additive component is used in cracking of hydrocarbon feedstock containing hydrocarbons of higher molecular weight and higher boiling point and/or olefin gasoline naphtha feedstock for producing lower yield of fuel gas with out affecting the conversion and yield of general cracking products such as gasoline, propylene and C4 olefins.
Abstract:
A process for catalytic conversion of low value hydrocarbon streams to light olefins in comparatively higher yields is disclosed. Propylene is obtained in amounts higher than 20 wt. % and ethylene higher than 6 wt. %. The process is carried out in a preheated cracking reactor having a single riser and circulating an FCC catalyst. The riser is divided into three temperature zones in which different hydrocarbon feeds are introduced. An oxygenate feed is introduced in the operative top zone in the riser. Heat for the endothermic cracking is obtained by the exothermic reaction of converting the oxygenate feed into gas and/or from a regenerator in which the spent FCC catalyst is burnt.
Abstract:
A process for testing a zeolite based FCC catalyst and a ZSM-5 zeolite based FCC catalyst additive for simulating commercial plant yields is disclosed in, the present disclosure wherein the catalyst and the additive are subjected separately to a steaming protocol with 60 to 100% steam at a temperature in the range of 750° C. to 850° C. for 3 to 200 hours to obtain a catalyst and a catalyst additive deactivated under, said simulated commercial plant hydrothermal deactivation conditions. The deactivated catalyst and the deactivated catalyst additive are admixed in a pre-determined weight proportion. The obtained catalyst mixture is then used for cracking a hydrocarbon feed for a pre-determined period of time to generate cracking data. Product yields are measured from the generated cracking data at a pre-determined simulated commercial plant conversion of the hydrocarbon feed.