Abstract:
To improve a manufacture yield of semiconductor devices each including an IGBT, an active region defined by an insulating film and where an element of an IGBT is formed has a first long side and a second long side spaced at a predetermined distance apart from each other and extended in a first direction in a planar view. One end of the first long side has a first short side forming a first angle with the first long side, and one end of the second long side has a second short side forming a second angle with the second long side. The other end of the first long side has a third short side forming a third angle with the first long side, and the other end of the second long side has a fourth short side forming a fourth angle with the second long side. The first angle, the second angle, the third angle, and the fourth angle are in a range larger than 90 degrees and smaller than 180 degrees.
Abstract:
An improvement is achieved in the performance of a semiconductor device. Over the main surface of a semiconductor substrate for the n-type base of an IGBT, an insulating layer is formed. In a trench of the insulating layer, an n-type semiconductor layer is formed over the semiconductor substrate and, on both sides of the semiconductor layer, gate electrodes are formed via gate insulating films. In an upper portion of the semiconductor layer, a p-type semiconductor region for a p-type base and an n+-type semiconductor region for an n-type emitter are formed. Under the gate electrodes, parts of the insulating layer are present. The side surfaces of the gate electrodes opposite to the side surfaces thereof facing the semiconductor layer via the gate insulating films are adjacent to the insulating layer.
Abstract:
An improvement is achieved in the performance of a semiconductor device. Over the main surface of a semiconductor substrate for the n-type base of an IGBT, an insulating layer is formed. In a trench of the insulating layer, an n-type semiconductor layer is formed over the semiconductor substrate and, on both sides of the semiconductor layer, gate electrodes are formed via gate insulating films. In an upper portion of the semiconductor layer, a p-type semiconductor region for a p-type base and an n+-type semiconductor region for an n-type emitter are formed. Under the gate electrodes, parts of the insulating layer are present. The side surfaces of the gate electrodes opposite to the side surfaces thereof facing the semiconductor layer via the gate insulating films are adjacent to the insulating layer.