Abstract:
Provided herein are methods for expressing proteins with disulfide bridges such as Vicrostatin (VCN), a chimeric variant of native snake venom disintegrin Contortrostatin (CN). The methods include what is believed to be a more efficient natural selection process that results in generating increased amounts of correctly-folded active conformers of proteins with disulfide bridges. In an aspect, this is achieved by growing Origami B cells in a more optimal redox environment during the induction of heterologous recombinant protein production.
Abstract:
Provided herein are methods for expressing proteins with disulfide bridges such as Vicrostatin (VCN), a chimeric variant of native snake venom disintegrin Contortrostatin (CN). The methods include what is believed to be a more efficient natural selection process that results in generating increased amounts of correctly-folded active conformers of proteins with disulfide bridges. In an aspect, this is achieved by growing Origami B cells in a more optimal redox environment during the induction of heterologous recombinant protein production.
Abstract:
A method of treating ovarian cancer (OC) includes administering to a subject in need thereof an effective amount of a pharmaceutical composition comprising vicrostatin and/or a protein substantially similar to vicrostatin. The administration is preferably performed intraperitoneally. The methods may include concurrently or sequentially administering to the patient one or more additional treatments for ovarian cancer. A pharmaceutical composition used in connection with the methods of the present invention comprise vicrostatin loaded in a viscoelastic gel comprising polyethylene oxide (PEO) and carboxymethyl cellulose (CMC).
Abstract:
This invention relates to methods of inhibiting binding between a cell expressing integrin receptors specific for one or more integrins selected from the group consisting of αIIbβ3, αvβ3, αvβ5, or α5β1, said method comprising contacting the cell with a monomeric disintegrin or monomeric disintegrin domain which comprises a C-terminal sequence non-native to the disintegrin or disintegrin domain, said C-terminal sequence encoding a functional integrin-binding loop.
Abstract:
This invention relates to methods of expressing eukaryotic proteins in prokaryotic hosts, particularly eukaryotic proteins that require formation of disulfide bridges for biological activity. Various approaches are used including fusion to thioredoxin, cytoplasmic expression of disulfide isomerases, deficiencies in thioredoxin and/or glutathione reductases, deficiencies in proteases, and the like. The method is applicable to express monomeric and dimeric forms of the eukaryotic protein with biological activity such as monomeric and dimeric forms of a disintegrin or a disintegrin domain. Included are the vectors, host cells expressing the proteins, the expressed proteins and methods of using the proteins.
Abstract:
This invention relates to methods of inhibiting binding between a cell expressing integrin receptors specific for one or more integrins selected from the group consisting of αIIbβ3, αvβ3, αvβ5, or α5β1, said method comprising contacting the cell with a monomeric disintegrin or monomeric disintegrin domain which comprises a C-terminal sequence non-native to the disintegrin or disintegrin domain, said C-terminal sequence encoding a functional integrin-binding loop.
Abstract:
This invention relates to methods of expressing eukaryotic proteins in prokaryotic hosts, particularly eukaryotic proteins that require formation of disulfide bridges for biological activity. Various approaches are used including fusion to thioredoxin, cytoplasmic expression of disulfide isomerases, deficiencies in thioredoxin and/or glutathione reductases, deficiencies in proteases, and the like. The method is applicable to express monomeric and dimeric forms of the eukaryotic protein with biological activity such as monomeric and dimeric forms of a disintegrin or a disintegrin domain. Included are the vectors, host cells expressing the proteins, the expressed proteins and methods of using the proteins.
Abstract:
Modified ADAM (A Disintegrin and Metalloproteinase) Polypeptides (MAPs) are provided. Methods are provided for administering MAPs for anti-angiogenesis and anti-tumor growth activity. Compositions of the invention are also useful for treating endothelial cell dysfunction and for diagnosis of integrin-related conditions.
Abstract:
Provided herein are compositions and methods for treating soft tissue injuries using a patch having a polymer on its surface linked to polypeptides having a disintegrin domain. The polypeptides having a disintegrin domain can include contortrostatin, vicrostatin, and ADAM derived polypeptides. Compositions of the invention can be used for the treatment of injuries to soft tissues that include the eye, liver and brain.