摘要:
Devices and methods for performing dielectrophoresis are described. The devices contain sample channel which is separated by physical barriers from electrode channels which receive electrodes. The devices and methods may be used for the separation and analysis of particles in solution, including the separation and isolation of cells of a specific type. As the electrodes do not make contact with the sample, electrode fouling is avoided and sample integrity is better maintained.
摘要:
Devices and methods for performing dielectrophoresis are described. The devices contain sample channel which is separated by physical barriers from electrode channels which receive electrodes. The devices and methods may be used for the separation and analysis of particles in solution, including the separation and isolation of cells of a specific type. As the electrodes do not make contact with the sample, electrode fouling is avoided and sample integrity is better maintained.
摘要:
Devices and methods for performing dielectrophoresis are described. The devices contain sample channel which is separated by physical barriers from electrode channels which receive electrodes. The devices and methods may be used for the separation and analysis of particles in solution, including the separation and isolation of cells of a specific type. As the electrodes do not make contact with the sample, electrode fouling is avoided and sample integrity is better maintained.
摘要:
Devices and methods for performing dielectrophoresis are described. The devices contain a sample channel which is separated by physical barriers from electrode channels which receive electrodes. The devices and methods may be used for the separation and analysis of particles in solution, including the separation and isolation of cells of a specific type. As the electrodes do not make contact with the sample, electrode fouling is avoided and sample integrity is better maintained.
摘要:
The present invention relates to medical devices and methods for treating a lesion such as a vascular stenosis using non-thermal irreversible electroporation (NTIRE). Embodiments of the present invention provide a balloon catheter type NTIRE device for treating a target lesion comprising a plurality of electrodes positioned along the balloon that are electrically independent from each other so as to be individually selectable in order to more precisely treat an asymmetrical lesion in which the lesion extends only partially around the vessel.
摘要:
The present invention provides methods, devices, and systems for in vivo treatment of cell proliferative disorders. The invention can be used to treat solid tumors, such as brain tumors. The methods rely on non-thermal irreversible electroporation (IRE) to cause cell death in treated tumors.
摘要:
The present invention relates to the field of medical treatment of diseases and disorders, as well as the field of biomedical engineering. Embodiments of the invention relate to the delivery of Irreversible Electroporation (IRE) through the vasculature of organs to treat tumors embedded deep within the tissue or organ, or to decellularize organs to produce a scaffold from existing animal tissue with the existing vasculature intact. In particular, methods of administering non-thermal irreversible electroporation (IRE) in vivo are provided for the treatment of tumors located in vascularized tissues and organs. Embodiments of the invention further provide scaffolds and tissues from natural sources created using IRE ex vivo to remove cellular debris, maximize recellularization potential, and minimize foreign body immune response. The engineered tissues can be used in methods of treating subjects, such as those in need of tissue replacement or augmentation.
摘要:
A novel BC fermentation technique for controlling 3D shape, thickness and architecture of the entangled cellulose nano-fibril network is presented. The resultant nano-cellulose based structures are useful as biomedical implants and devices, are useful for tissue engineering and regenerative medicine, and for health care products. More particularly, embodiments of the present invention relate to systems and methods for the production and control of 3-D architecture and morphology of nano-cellulose biomaterials produced by bacteria using any biofabrication process, including the novel 3-D Bioprinting processes disclosed. Representative processes according to the invention involve control of the rate of production of biomaterial by bacteria achieved by meticulous control of the addition of fermentation media using a microfluidic system. In exemplary embodiments, the bacteria gradually grew up along the printed alginate structure that had been placed into the culture, incorporating it. After culture, the printed alginate structure was successfully removed revealing porosity where the alginate had been placed. Porosity and interconnectivity of pores in the resultant 3-D architecture can be achieved by porogen introduction using, e.g., ink-jet printer technology.
摘要:
The present invention provides systems, methods, and devices for electroporation-based therapies (EBTs). Embodiments provide patient-specific treatment protocols derived by the numerical modeling of 3D reconstructions of target tissue from images taken of the tissue, and optionally accounting for one or more of physical constraints or dynamic tissue properties. The present invention further relates to systems, methods, and devices for delivering bipolar electric pulses for irreversible electroporation exhibiting reduced or no damage to tissue typically associated with an EBT-induced excessive charge delivered to the tissue.
摘要:
The present invention relates to the field of medical treatment of diseases and disorders, as well as the field of biomedical engineering. Embodiments of the invention relate to the delivery of Irreversible Electroporation (IRE) through the vasculature of organs to treat tumors embedded deep within the tissue or organ, or to decellularize organs to produce a scaffold from existing animal tissue with the existing vasculature intact. In particular, methods of administering non-thermal irreversible electroporation (IRE) in vivo are provided for the treatment of tumors located in vascularized tissues and organs. Embodiments of the invention further provide scaffolds and tissues from natural sources created using IRE ex vivo to remove cellular debris, maximize recellularization potential, and minimize foreign body immune response. The engineered tissues can be used in methods of treating subjects, such as those in need of tissue replacement or augmentation.