摘要:
Devices and methods for performing dielectrophoresis are described. The devices contain sample channel which is separated by physical barriers from electrode channels which receive electrodes. The devices and methods may be used for the separation and analysis of particles in solution, including the separation and isolation of cells of a specific type. As the electrodes do not make contact with the sample, electrode fouling is avoided and sample integrity is better maintained.
摘要:
Devices and methods for performing dielectrophoresis are described. The devices contain sample channel which is separated by physical barriers from electrode channels which receive electrodes. The devices and methods may be used for the separation and analysis of particles in solution, including the separation and isolation of cells of a specific type. As the electrodes do not make contact with the sample, electrode fouling is avoided and sample integrity is better maintained.
摘要:
Devices and methods for performing dielectrophoresis are described. The devices contain sample channel which is separated by physical barriers from electrode channels which receive electrodes. The devices and methods may be used for the separation and analysis of particles in solution, including the separation and isolation of cells of a specific type. As the electrodes do not make contact with the sample, electrode fouling is avoided and sample integrity is better maintained.
摘要:
Devices and methods for performing dielectrophoresis are described. The devices contain sample channel which is separated by physical barriers from electrode channels which receive electrodes. The devices and methods may be used for the separation and analysis of particles in solution, including the separation and isolation of cells of a specific type. As the electrodes do not make contact with the sample, electrode fouling is avoided and sample integrity is better maintained.
摘要:
Devices and methods for performing dielectrophoresis are described. The devices contain a sample channel which is separated by physical barriers from electrode channels which receive electrodes. The devices and methods may be used for the separation and analysis of particles in solution, including the separation and isolation of cells of a specific type. As the electrodes do not make contact with the sample, electrode fouling is avoided and sample integrity is better maintained.
摘要:
Test sockets, test systems, and methods for testing microfeature devices with a substrate and a plurality of conductive interconnect elements projecting from the substrate. In one embodiment, a test socket includes a support surface and a plurality of apertures in the support surface corresponding to at least some of the interconnect elements of the microfeature device. The individual apertures extend through the test socket and are sized to receive a portion of one of the interconnect elements so that the substrate is spaced apart from the support surface when the microfeature device is received in the test socket. In one aspect of this embodiment, the individual apertures have a cross-sectional dimension less than a cross-sectional dimension of the interconnect elements so that the apertures receive only a portion of the corresponding interconnect element.
摘要:
An apparatus and method of detecting a defect in an imager die package. The method comprises the steps of exposing the imager die package to light at a first angle, exposing the imager die package to light at a second angle, outputting electrical signals based on the exposures; and determining the level at which a defect is present based on the output electrical signals. An exemplary embodiment of the apparatus comprises a first light source positioned over an imager die package at a first angle, a second light source over the imager die package at a second angle, said first and second angles being different from each other; and a processor for determining a level of defection in the die package.
摘要:
An apparatus and method of detecting a defect in an imager die package. The method comprises the steps of exposing the imager die package to light at a first angle, exposing the imager die package to light at a second angle, outputting electrical signals based on the exposures; and determining the level at which a defect is present based on the output electrical signals. An exemplary embodiment of the apparatus comprises a first light source positioned over an imager die package at a first angle, a second light source over the imager die package at a second angle, said first and second angles being different from each other; and a processor for determining a level of defection in the die package.
摘要:
A plurality of electrical interconnections may be formed in an electrical device including a first component having a plurality of contact pads and a second component having a plurality of contact pads. The two components are placed in a confronting spaced relationship such that each contact pad of the first component locationally corresponds to one of the contact pads of the second component. The contact pads of the second component are further arranged such that at least two of the contact pads are laterally offset relative to their locationally corresponding contact pads on the first component with one of the at least two contact pads being offset in a first direction while the other is offset in another direction. A mass of conductive material is disposed between each contact pad of the first component and its corresponding contact pad of the second component. The masses of conductive material may be formed into columnar members wherein the columnar members are skewed when formed between a pair of relatively offset contact pads.
摘要:
A plurality of electrical interconnections may be formed in an electrical device including a first component having a plurality of contact pads and a second component having a plurality of contact pads. The two components are placed in a confronting spaced relationship such that each contact pad of the first component locationally corresponds to one of the contact pads of the second component. The contact pads of the second component are further arranged such that at least two of the contact pads are laterally offset relative to their locationally corresponding contact pads on the first component with one of the at least two contact pads being offset in a first direction while the other is offset in another direction. A mass of conductive material is disposed between each contact pad of the first component and its corresponding contact pad of the second component. The masses of conductive material may be formed into columnar members wherein the columnar members are skewed when formed between a pair of relatively offset contact pads.