摘要:
A respiration monitoring device comprises an electronic controller configured to: receive an audio signal that is acoustically coupled with an airway of a patient receiving mechanical ventilation therapy from a mechanical ventilator; map the audio signal to one or more lung disease or injury condition categories; and at least one of: display the mapped one or more lung disease or injury condition categories on a display device; and determine a recommended adjustment to one or more parameters of the mechanical ventilation therapy delivered to the patient based at least on the mapped lung disease or injury condition categories and displaying the recommended adjustment on the display device.
摘要:
The invention relates to a device and a method for the determination of the position of a catheter in a vascular system (8). In this, the measured positions (r1, r2) of two magnetic localizers at the tip of a catheter are displaced by correction vectors (k1, k2) while optimizing a quality dimension. The quality dimension includes a component taking account both of the deviation of the measured positions (r1, r2) from the vascular layout and of the deviation of the associated orientation (r2−r1) from the orientation of the vascular layout according to a vascular map. In addition, the quality dimension may include components which evaluate the measured shape of the catheter compared to the vascular map. An additional correction step can further ensure that the corrected positions (r1′, r2″) correspond to the preset fixed distance (d) of the localizers (4, 5).
摘要:
A therapy treatment response simulator includes a modeler (202) that generates a model of a structure of an object or subject based on information about the object or subject and a predictor (204) that generates a prediction indicative of how the structure is likely to respond to treatment based on the model and a therapy treatment plan. In another aspect, a system includes performing a patient state determining in silico simulation for a patient using a candidate set of parameters corresponding to another patient and producing a first signal indicative of a predicted state of the patient, and generating a second signal indicative of whether the candidate set of parameters are suitable for the patient based on a known state of the patient.
摘要:
A tracking system for a target anatomy of a patient can include a medical device having a body (281) having a distal end (290) and at least one channel (292) formed therein, where the body is adapted for insertion through an anatomy (105) to reach a target area (430); an accelerometer (185) connected to the body and positioned in proximity to the distal end; an imaging device (295) operably coupled with the body; and a light source (297) operably coupled with the body, where the accelerometer is in communication with a remote processor (120) for transmitting acceleration data thereto, where the imaging device is in communication with the remote processor for transmitting real-time images thereto, and where an orientation of the medical device with respect to the anatomy is determined by the processor based on the acceleration data.
摘要:
A system for displaying lung ventilation information, the system comprising an input (12) and a processing unit (15). The input being provided for receiving multiple CT images (71) of a lung, each CT image (71) corresponding to one phase of at least two different phases in a respiratory cycle. The processing unit (15) being configured to compare CT images (71) corresponding to different phases in the respiratory cycle for determining a deformation vector field for each phase, to generate for each phase a ventilation image (72) based on the corresponding deformation vector field, to spatially align the ventilation images (72), and to generate for at least one common position (62) in each one of the aligned ventilation images (72), a function (81) of a time course of a ventilation value for said common position (62), each ventilation value in the function (81) being based on the deformation vector fields corresponding to the aligned ventilation images (73).
摘要:
An oncology monitoring system comprises: an image analysis module (42, 44) configured to perform an oncological monitoring operation based on images of a subject, for example acquired by positron emission tomography (PET) and computed tomography (CT); and a clinical guideline support module (10). The clinical guideline support module is configured to: display a graphical flow diagram (GFD) of a clinical therapy protocol for treating the subject comprising graphical blocks (B0, B1 B2, B3, B4, B5, B21, B211, B22, B221, B222, B223, B23, B231, B232) representing therapeutic or monitoring operations of the clinical therapy protocol including at least one monitoring operation performed by the image analysis module; annotate a graphical block of the graphical flow diagram with subject-specific information pertaining to a therapeutic or monitoring operation represented by the graphical block; and display an annotation (POP) of a graphical block (B211) responsive to selection of the graphical block by a user.
摘要:
A description is given of a method and a device for the calibration of an image pick-up device which is sensitive to magnetic fields and for the imaging by means of such an image pick-up device. The image pick-up device is notably an image intensifier in X-ray systems such as, for example, systems provided with a C-arm. Calibration is performed essentially by forming and storing a look-up table whereby a plurality of magnetic field data acting on the image pick-up device is associated with calibration data required for correcting the distortions caused thereby. During imaging, the magnetic field data acting on the image pick-up device during the formation of an image is measured and the calibration data associated with this magnetic field data in the table is read out and used for the correction of the acquired image.
摘要:
A description is given of a method and a device for the calibration of an image pick-up device which is sensitive to gravity. Also described are a method and a device for imaging by means of such an image pick-up device; they are used in particular in X-ray systems, for example, systems provided with a C-arm. Calibration is performed essentially by forming and storing a look-up table whereby the calibration data required for the correction of distortions due to the supporting construction is associated with a plurality of position data of the supporting construction. During imaging the direction of the force of gravity relative to the supporting construction is measured; therefrom the position data is calculated and the calibration data associated with this data in the table is read out and used for the correction of the acquired image.
摘要:
An oncology monitoring system comprises: an image analysis module (42, 44) configured to perform an oncological monitoring operation based on images of a subject, for example acquired by positron emission tomography (PET) and computed tomography (CT); and a clinical guideline support module (10). The clinical guideline support module is configured to: display a graphical flow diagram (GFD) of a clinical therapy protocol for treating the subject comprising graphical blocks (B0, B1, B2, B3, B4, B5, B21, B211, B22, B221, B222, B223, B23, B231, B232) representing therapeutic or monitoring operations of the clinical therapy protocol including at least one monitoring operation performed by the image analysis module; annotate a graphical block of the graphical flow diagram with subject-specific information pertaining to a therapeutic or monitoring operation represented by the graphical block; and display an annotation (POP) of a graphical block (B211) responsive to selection of the graphical block by a user.
摘要:
A system for displaying lung ventilation information, the system comprising an input (12) and a processing unit (15). The input being provided for receiving multiple CT images (71) of a lung, each CT image (71) corresponding to one phase of at least two different phases in a respiratory cycle. The processing unit (15) being configured to compare CT images (71) corresponding to different phases in the respiratory cycle for determining a deformation vector field for each phase, to generate for each phase a ventilation image (72) based on the corresponding deformation vector field, to spatially align the ventilation images (72), and to generate for at least one common position (62) in each one of the aligned ventilation images (72), a function (81) of a time course of a ventilation value for said common position (62), each ventilation value in the function (81) being based on the deformation vector fields corresponding to the aligned ventilation images (73).