摘要:
The anticorrosive properties of a coating autodeposited on a metal substrate are improved by contacting the autodeposited coating with an aqueous solution containing Group IIA or Group IIB metal cations (e.g., calcium or zinc cations) and phosphate anions prior to curing. The rinse solution is preferably acidic and can be prepared, for example, from calcium nitrate and an oxy acid of phosphorus or zinc dihydrogen phosphate. Optionally, the rinse solution also includes an accelerator such as hydroxylamine.
摘要:
The invention is directed to a method of forming, producing or manufacturing functionalized nanomaterials, and, specifically, soluble functionalized nanomaterials. The presently described invention also relates to nanomaterial-based composites consisting of a target material, which can include ceramic, polymer, or metallic matrices incorporated into or grown on nanomaterials, as well as a method or synthesis technique for the formation, production, or manufacture of nanomaterial-based composites through microwave-induced reaction.
摘要:
Improved nanotube devices and systems/methods for fabrication thereof are provided. The present disclosure provides systems/methods for depositing controlled numbers of nanotubes with specific properties at predefined locations for the fabrication of nanotube devices. The nanotube devices may be utilized in a range of applications. A bio-fuel cell system that does not require a proton exchange membrane separator and does not need a mediator to transfer charge is provided. This exemplary bio-fuel cell uses enzyme functionalized SWNTs for the anode/cathode. The absence of a membrane in the bio-fuel cell configuration opens up the possibility of other configurations that would otherwise be unfeasible. This includes a bio-fuel cell where the anode/cathode are on the same substrate. Since the electrodes can share the same substrate, the configuration may be integrated with a circuit device on the same substrate. An IC and its power source may be fabricated on the same silicon wafer.
摘要:
The invention is directed to a method of forming, producing or manufacturing functionalized nanomaterials, and, specifically, soluble functionalized nanomaterials. The presently described invention also relates to nanomaterial-based composites consisting of a target material, which can include ceramic, polymer, or metallic matrices incorporated into or grown on nanomaterials, as well as a method or synthesis technique for the formation, production, or manufacture of nanomaterial-based composites through microwave-induced reaction.
摘要:
An optical gadget is disclosed which in one embodiment is fixed at a location in an orthogonal position on the central optical axis of an operating system, such as a microscope, that may not be truly orthogonal. The gadget includes a hollow tube and a mount for attaching the tube to a control optical axis of an intended orthogonal system such as a microscope.
摘要:
A method of depositing nanotubes in a region defined by an aperture is disclosed. The method provides advantageous control over the number of nanotubes to be deposited, as well as the pattern and spacing of nanotubes. Electrophoretic deposition, along with proper configuration of the aperture, allows at least one nanotube to be deposited in a target region with nanometer scale precision. Pre-sorting of nanotubes, e.g., according to their geometries or other properties, may be used in conjunction with embodiments of the invention to facilitate fabrication of devices with specific performance requirements. The method is useful for many applications where it is desirable to deposit more than one nanotube in a defined region. For example, vertical field effect transistor (VFET) designs may benefit from having more than one nanotube forming a channel to allow more current to flow through the device. By controlling the number of nanotubes to be deposited, one can ensure that the VFET output can be designed with sufficient current to meet the parameters of a logic circuit input.
摘要:
This invention relates to compositions and processes for the fabrication of piezoelectric composites having improved figures of merit for both sensor and non-sensor applications. These composites comprise piezoelectric particles embedded in a polymer matrix. The improvements of this invention result from discoveries of the effects of polymer bulk compliance, polymer anisotropy, polymer melt index, and polymer/ceramic wettability on performance. The loss corrected figure of merit (g.sub.h d.sub.h /tan.delta.) obtained for the 0-3 composites is as high as 10.5.times.10.sup.-10 m.sup.2 /N, which is about four times higher than previously published for 0-3 composites of the prior art. Methods are described for the introduction of anisotropy into ceramic particle/polymer composites, so that cancellation effects that degrade the piezoelectric properties of composites can be reduced.
摘要:
A method of fabricating a non-brittle, carbon nanopaper from single wall, multiwall, and combination thereof, from carbon nanotubes, using a vacuum deposition, high temperature annealing, and polystyrene polymer rinse process; which nanopaper can be nitrided by either a plasma-enhanced chemical vapor deposition (PECVD) process, or an by an electrochemical method, to obtain a useful chemically functionalized substrate, a substrate containing metastable N4, N8, and longer chain polymeric nitrogen clusters. Such nitrided carbon nanopaper can be used to enhance the ballistic performance of gun propellants, while reducing gun barrel wear and erosion thereof.
摘要:
A nanotube device and a method of depositing nanotubes for device fabrication are disclosed. The method relates to electrophoretic deposition of nanotubes, and allows a control of the number of deposited nanotubes and positioning within a defined region.
摘要:
The present disclosure provides for a method of forming, producing or manufacturing functionalized and soluble nanomaterials, most specifically carbon nanotubes on a substrate, which can be used in the production or manufacture of biofuel cells. One embodiment provides for the coupling of biofuel cells with a nanomaterial, wherein the nanomaterial supports catalytic enzymes. Another embodiment provides for a biofuel cell which uses enzymes immobilized on nanomaterials as electrodes. Another embodiment provides for the construction of a biofuel cell, wherein the application of a microwave process, and/or an electrochemical technique, is used to develop a biofuel cell having nanomaterial/enzyme-based electrodes on a substrate. Another embodiment provides for a composite of nanomaterial grown on a substrate, coupled to tethered or bonded enzymes, which makes it possible to fabricate direct electron transfer electrodes. Another embodiment provides for an implanted device. Another embodiment provides for a biofuel cell that can also function as a biosensor. A method for producing a nanomaterial-substrate system is also disclosed.