Abstract:
A method of fabricating a sheet of semiconductor material is provided. The method includes forming a first layer of silicon powder that has a lower surface and an opposite upper surface. The method also includes depositing a second layer of silicon powder across the upper surface of the first layer, wherein the second layer of silicon powder has a lower surface and an opposite upper surface and has a lower melting point than the first layer of silicon powder. The method also includes heating at least one of the first and second layers of silicon powder to initiate a controlled melt of at least one of the first and second layers of silicon powder, and cooling at least one of the first and second layers of silicon powder to initiate crystallization of at least one of the first and second layers of silicon powder.
Abstract:
Methods and apparatus for fabricating a semiconductor sheet are provided. In one aspect, a method for fabricating a semiconductor wafer includes applying a layer of semiconductor material across a portion of a setter material, introducing the setter material and the semiconductor material to a predetermined thermal gradient to form a melt, wherein the thermal gradient includes a predetermined nucleation and growth region, and forming at least one local cold spot in the nucleation and growth region to facilitate inducing crystal nucleation at the at least one desired location.
Abstract:
Methods and apparatus for fabricating a semiconductor sheet are provided. In one aspect, a method for fabricating a semiconductor wafer includes applying a layer of semiconductor material across a portion of a setter material, introducing the setter material and the semiconductor material to a predetermined thermal gradient to form a melt, wherein the thermal gradient includes a predetermined nucleation and growth region, and forming at least one local cold spot in the nucleation and growth region to facilitate inducing crystal nucleation at the at least one desired location.
Abstract:
There is provided a structure comprising semiconductor material, the structure having at least one zone of reduced oxygen concentration, such zone having an interstitial oxygen concentration of not greater than 3×1017 oxygen atoms/cm3, such zone extending at least 75 microns in depth from a first major surface. There is further provided a photovoltaic cell comprising at least one such structure.
Abstract translation:提供了包括半导体材料的结构,该结构具有至少一个氧浓度降低的区域,该区域的间隙氧浓度不大于3×10 17个氧原子/ cm 3, / SUP>,该区域从第一主表面延伸至少75微米深。 还提供了包括至少一个这样的结构的光伏电池。
Abstract:
A process for melting powders of a semiconductor material, such as silicon, to yield a high-purity solid product. The process generally entails introducing the powder into an elevated end of a tube inclined from horizontal and, while maintaining an inert atmosphere within the tube, rotating the tube so as to agitate and cause the powder therein to flow toward an oppositely-disposed lower end of the tube while heating the tube so that the powder melts as it flows toward the lower end of the tube. The molten material is then allowed to flow freely from the lower end of the tube and subsequently solidify to form a product.
Abstract:
There is provided a method of fabricating a wafer, comprising depositing semiconductor material into a recess in a setter, moving the setter through a heating/cooling region to subject the semiconductor material to a temperature profile, and removing a wafer from the recess. The size and shape of the wafer are substantially equal to the size of the wafer when it is used. As a result, the wafer can be fabricated in any desired shape and with any of a variety of surface structural features and/or internal structural features. The temperature profile can be closely controlled, enabling production of wafers having structural features not previously obtainable. There are also provided wafers formed by such methods and setters for use in such methods.
Abstract:
There are provided methods of purifying a material, comprising melting solid material to form liquefied material, directionally solidifying a portion of the liquefied material; and removing a liquid remainder from the purified solidified material. Preferably, the purified solidified material is melted to form re-liquefied purified material, and re-liquefied purified material is removed. Preferably, the material is positioned in a container as it is being purified. The method is particularly useful for purifying elemental material, e.g., semiconductor material such as silicon and/or germanium, such as recycle scrap silicon and/or metallurgical grade silicon. There are also provided systems for carrying out such methods.
Abstract:
Devices and processes are provided configured to test electrical and physical function of photovoltaic modules at the location where the photovoltaic modules are installed and without having to disconnect the photovoltaic modules from their mechanical support or electrical circuits.