摘要:
Ultrasound is used to provide input data for a blood pressure estimation scheme. The use of transcutaneous ultrasound provides arterial lumen area and pulse wave velocity information. In addition, ultrasound measurements are taken in such a way that all the data describes a single, uniform arterial segment. Therefore a computed area relates only to the arterial blood volume present. Also, the measured pulse wave velocity is directly related to the mechanical properties of the segment of elastic tube (artery) for which the blood volume is being measured. In a patient monitoring application, the operator of the ultrasound device is eliminated through the use of software that automatically locates the artery in the ultrasound data, e.g., using known edge detection techniques. Autonomous operation of the ultrasound system allows it to report blood pressure and blood flow traces to the clinical users without those users having to interpret an ultrasound image or operate an ultrasound imaging device.
摘要:
The systems and methods enhance, or increase the strength of, signals collected from a target object, to facilitate identification of the object, by removing or suppressing signal variations or aberrations associated with the object or its surroundings.
摘要:
A method for continuous non-invasive hemodynamic state monitoring in a subject is provided. The method includes acquiring continuous ultrasound data via an ultrasound transducer attached to the subject. The method also includes estimating continuous arterial waveforms based upon the acquired ultrasound data. The method further includes deriving hemodynamic parameters for each cardiac cycle from the arterial waveforms. The method also includes defining a current hemodynamic state of the subject by setting limits on one or more hemodynamic parameters based upon the variation of these parameters over an initial period of time. The method further includes continuously monitoring a hemodynamic state of the subject. The method further includes comparing a current state for one or more hemodynamic parameters of the subject to previously determined limits for the one or more hemodynamic parameters, and either outputting a trigger signal or alarm to a hemodynamic state monitor in an event that a change is detected in the current state of the one or more hemodynamic parameters or converting the arterial parameters into a continuous estimate of the arterial blood pressure in an event that a change is not detected.
摘要:
Ultrasound is used to provide input data for a blood pressure estimation scheme. The use of transcutaneous ultrasound provides arterial lumen area and pulse wave velocity information. In addition, ultrasound measurements are taken in such a way that all the data describes a single, uniform arterial segment. Therefore a computed area relates only to the arterial blood volume present. Also, the measured pulse wave velocity is directly related to the mechanical properties of the segment of elastic tube (artery) for which the blood volume is being measured. In a patient monitoring application, the operator of the ultrasound device is eliminated through the use of software that automatically locates the artery in the ultrasound data, e.g., using known edge detection techniques. Autonomous operation of the ultrasound system allows it to report blood pressure and blood flow traces to the clinical users without those users having to interpret an ultrasound image or operate an ultrasound imaging device.
摘要:
A method for continuous non-invasive hemodynamic state monitoring in a subject. The method includes acquiring continuous ultrasound data, estimating continuous arterial waveforms based upon the acquired ultrasound data, and deriving hemodynamic parameters for each cardiac cycle from the arterial waveforms. The method further includes defining a current hemodynamic state of the subject by setting limits on one or more hemodynamic parameters based upon the variation of these parameters over an initial period of time, and continuously monitoring a hemodynamic state of the subject. Further, a current state for one or more hemodynamic parameters of the subject are compared to previously determined limits for the one or more hemodynamic parameters, and either an alarm is triggered in an event that a change is detected in the current state of the one or more hemodynamic parameters or the arterial parameters are converted into a continuous estimate of the arterial blood pressure.
摘要:
A method for continuous non-invasive monitoring of multiple arterial parameters of a patient is provided. The method includes continuously acquiring ultrasound data via an ultrasound transducer attached to the patient for detecting a blood vessel using color flow processing within a monitoring scan plane. Further, the method includes processing the continuously acquired ultrasound data to generate continuous quantitative waveforms based on an estimated cross-sectional area of the blood vessel and an estimated volumetric flow rate of blood through the vessel and displaying the generated continuous quantitative waveforms for monitoring the arterial parameters of the patient in real-time.
摘要:
A method of guiding a clinician using an image display device associated with an imaging system is disclosed herewith. The method comprises: obtaining patient information along with relevant clinical procedure through a user interface; and selecting a predefined workflow and at least one device setting parameter from an information library. The method further comprises: communicating the selected workflow including the steps in the workflow to the clinician in real time using the image display system, upon initiating the clinical procedure; and configuring the imaging system using the selected device setting parameter to perform the selected workflow.
摘要:
A method for generating a high resolution image in a radiation imaging system which produces multiple exposure signals from a movable detector array is disclosed. The image data signals or image acquisition signals generated from the image detector assembly of the image radiation system during an imaging cycle are passed through a finite impulse response filter having a combined frequency response comprised of an inverse filter frequency response portion and a noise regularization frequency response portion such that the noise regularization decrease the frequency response of the filter as the frequency of the data signals increase thereby effectively preventing blurring of the image produced from the image data signals.
摘要:
A technique is provided for computing or monitoring blood viscosity. The technique includes measuring a cross sectional area of a arterial segment and a volumetric flow rate of blood flowing through the arterial segment at two or more locations, estimating a compliance transfer function from blood measurements to scale the arterial cross sectional area into a pressure waveform, deriving a transmission line model of the arterial segment based on the cross sectional area, as scaled by the compliance transfer function, of the arterial segment at the two or more locations and the volumetric flow rate of blood at the two or more locations. The technique also includes computing the blood viscosity based on the transmission line model.
摘要:
A method for continuous non-invasive monitoring of multiple arterial parameters of a patient is provided. The method includes continuously acquiring ultrasound data via an ultrasound transducer attached to the patient for detecting a blood vessel using color flow processing within a monitoring scan plane. Further, the method includes processing the continuously acquired ultrasound data to generate continuous quantitative waveforms based on an estimated cross-sectional area of the blood vessel and an estimated volumetric flow rate of blood through the vessel and displaying the generated continuous quantitative waveforms for monitoring the arterial parameters of the patient in real-time.