摘要:
Autonomous units and methods for downhole, multi-zone perforation and fracture stimulation for hydrocarbon production. The autonomous unit may be a perforating gun assembly, a bridge plug assembly, or fracturing plug assembly. The autonomous units are dimensioned and arranged to be deployed within a wellbore without an electric wireline. The autonomous units may be fabricated from a friable material so as to self-destruct upon receiving a signal. The autonomous units include a position locator for sensing the presence of objects along the wellbore and generating depth signals in response. The autonomous units also include an on-board controller for processing the depth signals and for activating an actuatable tool at a zone of interest.
摘要:
Autonomous units and methods for downhole, multi-zone perforation and fracture stimulation for hydrocarbon production. The autonomous unit may be a perforating gun assembly, a bridge plug assembly, or fracturing plug assembly. The autonomous units are dimensioned and arranged to be deployed within a wellbore without an electric wireline. The autonomous units may be fabricated from a friable material so as to self-destruct upon receiving a signal. The autonomous units include a position locator for sensing the presence of objects along the wellbore and generating depth signals in response. The autonomous units also include an on-board controller for processing the depth signals and for activating an actuatable tool at a zone of interest.
摘要:
Autonomous units and methods for downhole, multi-zone perforation and fracture stimulation for hydrocarbon production. The autonomous unit may be a perforating gun assembly, a bridge plug assembly, or fracturing plug assembly. The autonomous units are dimensioned and arranged to be deployed within a wellbore without an electric wireline. The autonomous units may be fabricated from a friable material so as to self-destruct upon receiving a signal. The autonomous units include a position locator for sensing the presence of objects along the wellbore and generating depth signals in response. The autonomous units also include an on-board controller for processing the depth signals and for activating an actuatable tool at a zone of interest.
摘要:
Autonomous units and methods for downhole, multi-zone perforation and fracture stimulation for hydrocarbon production. The autonomous unit may be a perforating gun assembly, a bridge plug assembly, or fracturing plug assembly. The autonomous units are dimensioned and arranged to be deployed within a wellbore without an electric wireline. The autonomous units may be fabricated from a friable material so as to self-destruct upon receiving a signal. The autonomous units include a position locator for sensing the presence of objects along the wellbore and generating depth signals in response. The autonomous units also include an on-board controller for processing the depth signals and for activating an actuatable tool at a zone of interest.
摘要:
Systems and methods for fracturing a formation are provided. A method includes generating a subsurface model including the production formation and a zone proximate to the production formation. A number of scenarios are simulated in which a volumetric change is created in the zone proximate to the production formation. A scenario is selected from the plurality of scenarios to stimulate the production formation. The scenario is performed to create a fracture field in the production formation.
摘要:
A method for controlling fluid injection parameters to improve well interactions and control hydrofracture geometries is provided. The method incorporates a systematic, transient analysis process for determining the formation effective displacement, stress and excess pore pressure field quantities at any depth within a stratified subterranean formation resulting from the subsurface injection of pressurized fluids.
摘要:
A method for predicting time-lapse seismic timeshifts in a three-dimensional geomechanical system including defining physical boundaries for the geomechanical system. In addition, one or more reservoir characteristics such as pore pressure and/or temperature history are acquired from multiple wells within the physical boundaries. The method also includes determining whether a formation in the geomechanical system is in an elastic regime or a plastic regime. The method also includes obtaining first and second seismic data sets for the geomechanical system, taken at first and second times. The method also includes running a geomechanical simulation to simulate the effects of changes in pore pressure or other reservoir characteristic on time-lapse seismic timeshifts in the formation.
摘要:
Methods of predicting earth stresses in response to pore pressure changes in a hydrocarbon-bearing reservoir within a geomechanical system, include establishing physical boundaries for the geomechanical system and acquiring reservoir characteristics. Geomechanical simulations simulate the effects of changes in reservoir characteristics on stress in rock formations within the physical boundaries to determine the rock formation strength at selected nodes in the reservoir. The strength of the rock formations at the nodes is represented by an effective strain (εeff), which includes a compaction strain (εc) and out-of-plane shear strains (γ1-3, Y2-3) at a nodal point. The methods further include determining an effective strain criteria (εeffcr) from a history of well failures in the physical boundaries. The effective strain (εeffcr) at a selected nodal point is compared with the effective strain criteria (εeffcr) to determine if the effective strain (εeff) exceeds the effective strain criteria (εeffcr).
摘要:
The present techniques provide methods and systems for fracturing reservoirs without directly treating them. For example, an embodiment provides a method for fracturing a subterranean formation. The method includes causing a volumetric decrease in a zone proximate to the subterranean formation so as to apply a mechanical stress to the subterranean formation.
摘要:
Systems and methods are described for fracturing a production formation. A method includes drilling a well into a zone proximate to a production formation, and increasing a volume of the zone through the well in order to apply a mechanical stress to the production formation.