摘要:
Process for stripping photoresist from a semiconductor wafer formed with at least one layer of OSG dielectric. The stripping process may be formed in situ or ex situ with respect to other integrated circuit fabrication processes. The process includes a reaction may be oxidative or reductive in nature. The oxidative reaction utilizes an oxygen plasma. The reductive reaction utilizes an ammonia plasma. The process of the present invention results in faster ash rates with less damage to the OSG dielectric than previously known stripping methods.
摘要:
Method for etching organic low-k dielectric using ammonia, NH3, as an active etchant. Processes using ammonia results in at least double the etch rate of organic low-k dielectric materials than processes using N2/H2 chemistries, at similar process conditions. The difference is due to the much lower ionization potential of NH3 versus N2 in the process chemistry, which results in significantly higher plasma densities and etchant concentrations at similar process conditions.
摘要:
Method for etching organic low-k dielectric using ammonia, NH3, as an active etchant. Processes using ammonia results in at least double the etch rate of organic low-k dielectric materials than processes using N2/H2 chemistries, at similar process conditions. The difference is due to the much lower ionization potential of NH3 versus N2 in the process chemistry, which results in significantly higher plasma densities and etchant concentrations at similar process conditions.
摘要翻译:使用氨,NH 3作为活性蚀刻剂蚀刻有机低k电介质的方法。 使用氨的工艺导致有机低k电介质材料的蚀刻速率至少比使用N 2 / H 2化学物质在相似工艺条件下的蚀刻速率的两倍。 不同之处在于,在工艺化学中,NH 3与N 2的电离电位低得多,这在相似的工艺条件下导致显着更高的等离子体密度和蚀刻剂浓度。
摘要:
A method for etching features in an integrated circuit wafer, the wafer incorporating at least one dielectric layer is provided. Generally, the wafer is disposed within a reaction chamber. An etchant gas comprising a hydrocarbon additive and an active etchant is flowed into the reaction chamber. A plasma is formed from the etchant gas within the reaction chamber. The feature is etched in at least a portion of the dielectric layer.
摘要:
An etch that provides a high oxide to photoresist selectivity in a low-pressure, high-density plasma is provided. An extremely high reverse RIE lag is achieved, wherein the etching of small high-aspect ratio openings is possible, but that of large openings is not. A high-density plasma is generated so that carbon monoxide (CO) is ionized to CO+ so that at least 1 sccm equivalent of CO+ is provided. Excited CO neutrals (CO*) are also present within the plasma. Fluorocarbon and hydrofluorocarbon gases are also provided. The excited CO neutrals scavenge free fluorine, near the wafer surface and in the large openings, increasing polymer deposition on the photoresist and in the large openings thus reduce or stop etching in those regions. Concurrently, CO+ is not hindered by diffusion limitation and is readily accelerated deep into the small openings by an applied electric potential; hence, providing oxygen atoms near the bottom of the small openings which help to remove polymer at the etch front and eliminates the propensity for etch stop.