Abstract:
A method for performing a search of a codebook is provided. The codebook includes a plurality of tracks each having a plurality of even pulse positions. The method includes partitioning a codevector having a plurality of pulses into a first subset of pulses and a second subset of pulses. Each pulse is assignable to a pulse position in the codevector, and each pulse is associated with a shift bit for indicating an odd position. The method also includes performing a first search for determining a first set of possible pulse positions for the pulses in the codevector. The method further includes performing a second search for determining a second set of possible pulse positions for the pulses in the codevector. In addition, the method includes forming the codevector using the first and second sets of possible pulse positions.
Abstract:
A multi-tone synchronous collision resolution system permits communication nodes within a MANET to contend simultaneously for a plurality of available channels. The communication nodes contend for access using a synchronous signaling mechanism that utilizes multiple tones in a synchronous manner to resolve contentions. Contentions are arbitrated locally, and a surviving subset of communication nodes is selected. The communication nodes of the surviving subset then transmit data packets simultaneously across the available communication channels.
Abstract:
A dihydroxy aromatic compound having a Formula (I) wherein R1 is selected from the group consisting of a cyano functionality, a nitro functionality, an aliphatic functionality having 1 to 10 carbons, an aliphatic ester functionality having 2 to 10 carbons, a cycloaliphatic ester functionality having 4 to 10 carbons and an aromatic ester functionality having 4 to 10 carbons; R2 is selected from the group consisting of a cyano functionality, a nitro functionality, an aliphatic ester functionality having 2 to 10 carbons, a cycloaliphatic ester functionality having 4 to 10 carbons and an aromatic ester functionality having 4 to 10 carbons; and each R3 and R4, at each occurrence, can be the same or different and are independently at each occurrence an aliphatic functionality having 1 to 10 carbons or a cycloaliphatic functionality having 3 to 10 carbons, “n” is an integer having a value 0 to 4 and “m” is an integer having a value 0 to 4.
Abstract:
An electrohydrodynamic spray apparatus includes a liquid inlet and a spray nozzle in fluid communication with the liquid inlet, where the spray nozzle has an opening downstream of the liquid inlet. An inner electrode is situated at least partially inside the spray nozzle. An outer electrode is situated external to the spray nozzle and within about 100 mm of the opening of the nozzle. The electrohydrodynamic spray apparatus can be combined with a substrate to form an electrohydrodynamic spray system. The electrohydrodynamic spray apparatus or system can be used to form nanostructures such as nanodrops, nanoparticles and thin films.
Abstract:
Systems and methods for processing data signals are described. In one implementation, a demodulator and a first decoder unit, such as a convolutional encoder or a quadrature amplitude modulation decoder, for receiving the output of the demodulator, decoding the second level of encoding and outputting a decoded signal and a first error indication signal indicative of errors in the decoded signal are provided. The decoded signal may be passed through a de-interleaving unit to form a de-interleaved signal. The first location signal may be passed to an identifier unit which receives it, and from it produces a second error indication signal indicative of the errors in the de-interleaved signal. The de-interleaved signal and the second error indication signal may be transmitted to a redundancy decoder, where the signals may be used to perform redundancy decoding.
Abstract:
A method for purifying a 2-aryl-3,3-bis(hydroxyaryl)phthalimidine comprises contacting a crude 2-aryl-3,3-bis(hydroxyaryl)phthalimidine with a purification agent, removing a 2-aryl-3-(aminoaryl)-3-(hydroxyaryl)phthalimidine compound from the crude 2-aryl-3,3-bis(hydroxyaryl)phthalimidine, and producing a purified 2-aryl-3,3-bis(hydroxyaryl)phthalimidine product comprising less than 200 parts per million of the 2-aryl-3-(aminoaryl)-3-(hydroxyaryl)phthalimidine compound. The purification agent is selected from the group consisting of an acidic material, an organic acid chloride, an organic anhydride, or a combination thereof. The 2-aryl-3-(aminoaryl)-3-(hydroxyaryl)phthalimidine compound has a formula: wherein each R1 is independently selected from a group consisting of a hydrocarbyl radical, a nitro radical, and a halogen atom; “a” is an integer from 0 to 4; and Ar1 and Ar2 are independently at each occurrence an aromatic radical. The purified 2-aryl-3,3-bis(hydroxyaryl)phthalimidines have low color, and are useful for preparing polymers, such as polycarbonates having a low color. The polycarbonates are useful for producing articles.
Abstract:
A system for processing a data signal (such as an ADSL or VDSL signal) includes a first decoder unit, such as a convolutional decoder or a QAM decoder, for receiving the data signal, decoding the second level of encoding and outputting a decoded signal and a first error indication signal indicative of errors in the decoded signal. A redundancy decoder employs the decoded signal and the first error indication signal (or transformed versions thereof) to perform redundancy decoding.
Abstract:
A system for processing a data signal (such as an ADSL or VDSL signal) includes a first decoder unit, such as a convolutional decoder or a QAM decoder, for receiving the data signal, decoding the second level of encoding and outputting a decoded signal and a first error indication signal indicative of errors in the decoded signal. A redundancy decoder employs the decoded signal and the first error indication signal (or transformed versions thereof) to perform redundancy decoding.
Abstract:
The present invention is directed to methods and compositions capable of blocking the inhibitory effect of a newly-identified intronic inhibitory sequence element, named ISS-N1 (for “intronic splicing silencer”), located in the SMN2 gene. The compositions and methods of the instant invention include oligonucleotide reagents (e.g., oligoribonucleotides) that effectively target the SMN2 ISS-N1 site in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the processed transcript. The ISS-N1 blocking agents of the invention cause elevated expression of SMN protein, thus compensating for the loss of SMN protein expression commonly observed in subjects with spinal muscular atrophy (SMA).
Abstract:
A method for purifying a 2-aryl-3,3-bis(hydroxyaryl)phthalimidine comprises contacting a crude 2-aryl-3,3-bis(hydroxyaryl)phthalimidine with a purification agent, removing a 2-aryl-3-(aminoaryl)-3-(hydroxyaryl)phthalimidine compound from the crude 2-aryl-3,3-bis(hydroxyaryl)phthalimidine, and producing a purified 2-aryl-3,3-bis(hydroxyaryl)phthalimidine product comprising less than 200 parts per million of the 2-aryl-3-(aminoaryl)-3-(hydroxyaryl)phthalimidine compound. The purification agent is selected from the group consisting of an acidic material, an organic acid chloride, an organic anhydride, or a combination thereof. The 2-aryl-3-(aminoaryl)-3-(hydroxyaryl)phthalimidine compound has a formula: wherein each R1 is independently selected from a group consisting of a hydrocarbyl radical, a nitro radical, and a halogen atom; “a” is an integer from 0 to 4; and Ar1 and Ar2 are independently at each occurrence an aromatic radical. The purified 2-aryl-3,3-bis(hydroxyaryl)phthalimidines have low color, and are useful for preparing polymers, such as polycarbonates having a low color. The polycarbonates are useful for producing articles.