Abstract:
A circuit comprises a receive processing window formation subsystem, a matched filter subsystem, a keystone interpolation subsystem, a phase modulation subsystem, and an image forming subsystem. The receive processing window formation subsystem forms, for each radar return from a scene, a receive processing window containing the radar return as an unbroken radar return. The matched filter subsystem creates a motion model for a reference point target disposed at a predetermined location within the scene, based on a set of motion compensation parameters for range and range rate, to compensate for at least some effects of fast time Doppler on the reference point target. The keystone interpolation subsystem rescales slow time information from the matched filter subsystem. A phase modulation subsystem applies phase modulations to a keystone-interpolated 2-D output array of information associated with the scene, to ensure proper registration in a range-Doppler map output of the scene.
Abstract:
A method for estimating a target direction of a wideband signal received on an electronically steered array includes: applying convolutional or stretch processing to spatial frequency data of the wideband signal; initializing a stabilization direction to a beam pointing direction; stabilizing the spatial frequency data to the stabilization direction; compressing the spatial frequency data to a plurality of frequency range or time bins; selecting range or time bins and forming a covariance matrix; calculating an estimated target direction using the covariance matrix; determining if a stabilization direction accuracy condition is met; recalculating the stabilization direction based on the estimated target direction if the stabilization direction accuracy condition is not met; and iteratively repeating until the stabilization direction accuracy condition is met.
Abstract:
A circuit comprises a receive processing window formation subsystem, a matched filter subsystem, a keystone interpolation subsystem, a phase modulation subsystem, and an image forming subsystem. The receive processing window formation subsystem forms, for each radar return from a scene, a receive processing window containing the radar return as an unbroken radar return. The matched filter subsystem creates a motion model for a reference point target disposed at a predetermined location within the scene, based on a set of motion compensation parameters for range and range rate, to compensate for at least some effects of fast time Doppler on the reference point target. The keystone interpolation subsystem rescales slow time information from the matched filter subsystem. A phase modulation subsystem applies phase modulations to a keystone-interpolated 2-D output array of information associated with the scene, to ensure proper registration in a range-Doppler map output of the scene.
Abstract:
A system and method for forming synthetic aperture radar images. Radar return pulses are grouped into sub-dwells, and their frequency content is separated into frequency sub-bands. A coarse image is formed for each sub-band/sub-dwell combination. The coarse images are iteratively interpolated to higher resolution and combined, to form a single high-resolution synthetic aperture radar image.
Abstract:
A signal identification system includes an analog adaptive channelizer having a plurality of channels. Each channel has a channel size defined by a bandwidth and a gain. The system further includes an electronic signal identification (ID) controller in signal communication with the analog adaptive channelizer. The ID controller is configured to determine a dynamic range event that modifies an energy level of an affected channel among the plurality of channels, and output a feedback signal including channel parameters based on the dynamic range event. The analog adaptive channelizer actively adjusts at least one of the bandwidth and the gain of the affected channel based on the feedback to change the channel size of the affected channel.
Abstract:
A system and method for forming synthetic aperture radar images. Radar return pulses are grouped into sub-dwells, and their frequency content is separated into frequency sub-bands. A coarse image is formed for each sub-band/sub-dwell combination. The coarse images are iteratively interpolated to higher resolution and combined, to form a single high-resolution synthetic aperture radar image.
Abstract:
A signal identification system includes an analog adaptive channelizer having a plurality of channels. Each channel has a channel size defined by a bandwidth and a gain. The system further includes an electronic signal identification (ID) controller in signal communication with the analog adaptive channelizer. The ID controller is configured to determine a dynamic range event that modifies an energy level of an affected channel among the plurality of channels, and output a feedback signal including channel parameters based on the dynamic range event. The analog adaptive channelizer actively adjusts at least one of the bandwidth and the gain of the affected channel based on the feedback to change the channel size of the affected channel.
Abstract:
A method for estimating a target direction of a wideband signal received on an electronically steered array includes: applying convolutional or stretch processing to spatial frequency data of the wideband signal; initializing a stabilization direction to a beam pointing direction; stabilizing the spatial frequency data to the stabilization direction; compressing the spatial frequency data to a plurality of frequency range or time bins; selecting range or time bins and forming a covariance matrix; calculating an estimated target direction using the covariance matrix; determining if a stabilization direction accuracy condition is met; recalculating the stabilization direction based on the estimated target direction if the stabilization direction accuracy condition is not met; and iteratively repeating until the stabilization direction accuracy condition is met.