摘要:
A nickel electrode for an alkaline storage battery in which an active material mainly containing nickel hydroxide is applied to a porous sintered nickel substrate, wherein a layer containing at least one hydroxide of an element selected from a group consisting of Ca, Sr, Sc, Y, lanthanoid, and Bi is formed on a surface of the active material thus applied to the sintered nickel substrate, or between the sintered nickel substrate and the active material.
摘要:
A metal hydride alkaline storage cell of the present invention comprises a positive electrode, a separator impregnated with an electrolyte, and a negative electrode comprising hydrogen-absorbing alloy powder. On the surface of the hydrogen-absorbing alloy powder, there is formed a layer of hydrogen-absorbing alloy oxide, and on the layer of the oxide, there is dotted a catalytic metal formed in a granular state by adding a substance soluble in the electrolyte. The substance is selected from the group consisting of a metal fluoride, a metal iodide, and a metal sulfide. The proportion of the metal fluoride, the metal iodide, or the metal sulfide in adding is restricted within the range of from 0.1 to 2.5 wt. % based on the weight of hydrogen-absorbing alloy powder. When the layer of the hydrogen-absorbing alloy oxide is formed on the surface of the hydrogen-absorbing alloy powder, the reaction area on the surface of the hydrogen-absorbing alloy is increased due to the roughness of the layer. Consequently, the catalytic action of the metal is fully utilized by dotting a catalytic metal on the alloy surface, and thereby the inner pressure characteristic high-rate charge characteristic) of a cell is improved.
摘要:
A nickel electrode for alkaline secondary battery including a porous sintered nickel substrate loaded with a nickel hydroxide-based active material, the nickel electrode has a configuration wherein a surface portion of the active material loaded into the sintered nickel substrate is provided with a combination of a first coating layer of a suitable compound and a second coating layer of a suitable compound, or a coating layer of a compound of two or more suitable elements, or wherein the coating layer of two or more suitable elements is formed between the sintered nickel substrate and the active material.
摘要:
In a nickel-metal hydride storage cell, deterioration of a cell capacity at high temperature and degradation of a cycle characteristic are suppressed. The nickel-metal hydride storage cell of the invention comprises in a cell case, a positive electrode comprising a positive electrode active material composed mainly of nickel hydroxide powder, a negative electrode comprising a negative electrode active material composed mainly of hydrogen-absorbing alloy powder, and a separator interposed between the positive and negative electrodes and impregnated with an electrolyte, the nickel-metal hydride storage cell characterized in that the negative electrode active material comprises a copper compound, the positive electrode comprises an aggregate of coated particles each in which a coating layer comprising a sodium-containing cobalt compound is formed on a surface of a nickel hydroxide particle, and the positive electrode active material is such that an oxide or hydroxide of one of bismuth, calcium, ytterbium, manganese, copper, scandium, and zirconium, is added to the aggregate of coated particles.
摘要:
In a non-sintered nickel electrode for an alkaline storage cell, a discharge capacity and cycle life are improved. This is achieved by employing, as an active material for the non-sintered electrode, coated nickel active material particles, each of the particle comprising a base particle composed of nickel hydroxide and a Co—P—A layer coated on the base particle comprising Co and P and an element A, where A is at least one element selected from the group consisting of Mn, Zn, Ni, Y, and Bi.
摘要:
A non-sintered nickel electrode for use in alkaline storage cells includes an active material comprising a solid solution of nickel hydroxide mixed with manganese, the solid solution further incorporating one or more elements selected from a group consisting of cobalt, cadmium, calcium and magnesium; an active material comprising a solid solution of nickel hydroxide mixed with manganese and zinc, the solid solution further incorporating one or more elements selected from a group consisting of cobalt, cadmium, calcium and magnesium; or an active material comprising nickel hydroxide with manganese added thereto, some of which manganese is incorporated in a solid solution of nickel hydroxide and the rest of which manganese exists as liberated from the solid solution of nickel hydroxide.
摘要:
A method of manufacturing a metal hydride alkaline storage cell includes a first step of preparing a negative electrode by applying a paste containing hydrogen absorbing alloy powder onto a substrate; and a second step of placing the negative electrode and a positive electrode into a cell can with disposing separator therebetween, and thereafter pouring an electrolyte into the cell can. Into the paste or the electrolyte, a catalytic metal compound that has a proportion of 0.1 to 2.5 wt. % based on the weight of the hydrogen-absorbing alloy powder and that is soluble in the electrolyte is added. Consequently, the catalytic action of the metal is fully utilized by this method that dots a catalytic metal or metal compound on the alloy surface, and thereby the inner pressure characteristic (high-rate charge characteristic) of a cell is improved.
摘要:
In a hydrogen absorbing alloy electrode containing hydrogen absorbing alloy powder and a binding agent, employed as the binding agent is a copolymer of aromatic vinyl and at least one of acrylic ester and methacrylic acid ester, in which the total content of acrylic ester units and methacrylic acid ester units is in the range of 43 to 90% by weight of the whole copolymer, and the hydrogen absorbing alloy electrode is used as a negative electrode of a nickel-metal hydride battery.
摘要:
In an alkali storage battery comprising a positive electrode, a negative electrode and an alkali electrolyte in a battery can, .alpha.-nickel hydroxide containing manganese is used as a cathode active material for the positive electrode, and the difference between a charging potential and an oxygen gas evolution potential at the positive electrode is increased, to suppress oxygen gas evolution during the charging, and the volume percentage of the cathode active material and an anode active material is set to not less than 75% in the battery can, to obtain a large battery capacity.
摘要:
In the non-sintered nickel electrode for an alkaline storage battery according to the present invention, the active material powder is made up of composite particles, each comprising a nickel hydroxide-containing core particle and a shell layer coating the nickel hydroxide-containing core particle, the shell layer containing a bismuth-containing compound, or is made up of composite particles, each comprising a nickel hydroxide-containing core particle, an inner shell layer coating the nickel hydroxide-containing core particle and an outer shell layer coating the inner shell layer, the inner shell layer containing a bismuth-containing compound and the outer shell layer containing cobalt metal, cobalt monoxide, cobalt hydroxide, cobalt oxyhydroxide or a sodium-containing cobalt compound prepared by adding an aqueous solution of sodium hydroxide to cobalt metal, cobalt monoxide, cobalt hydroxide or cobalt oxyhydroxide to obtain a mixture and heat-treating the mixture in the presence of oxygen. Provided is a non-sintered nickel electrode for an alkaline storage battery, having a high active material utilization rate not only when charged at normal temperatures but also when charged at high temperatures, and having good charge-discharge cycle characteristics.